The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A139764 Smallest term in Zeckendorf representation of n. 11
 1, 2, 3, 1, 5, 1, 2, 8, 1, 2, 3, 1, 13, 1, 2, 3, 1, 5, 1, 2, 21, 1, 2, 3, 1, 5, 1, 2, 8, 1, 2, 3, 1, 34, 1, 2, 3, 1, 5, 1, 2, 8, 1, 2, 3, 1, 13, 1, 2, 3, 1, 5, 1, 2, 55, 1, 2, 3, 1, 5, 1, 2, 8, 1, 2, 3, 1, 13, 1, 2, 3, 1, 5, 1, 2, 21, 1, 2, 3, 1, 5, 1, 2, 8, 1, 2, 3, 1, 89 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Also called a "Fibonacci fractal". Appears to be the same as the "ruler of Fibonaccis" mentioned by Knuth. - N. J. A. Sloane, Aug 03 2012 a(n) is also the number of matches to take away to win in a certain match game (see Rocher et al.). The frequencies of occurrences of the values in this sequence and A035614 are related by the golden ratio. REFERENCES D. E. Knuth, The Art of Computer Programming, Vol. 4A, Section 7.1.3, p. 82, solution to Problem 179. - From N. J. A. Sloane, Aug 03 2012 LINKS Steve Witham, Table of n, a(n) for n = 1..9999 Alex Bogomolny, Theory of Take-Away Games Sylvain Rocher, Elodie Privat, Laurent Orban, Alexandre Mothe and Laurent Thouy, La stratégie des allumettes A. J. Schwenk, Take-Away Games, The Fibonacci Quarterly, v 8, no 3 (1970), 225-234. Eric Weisstein's World of Mathematics, Wythoff Array Wikipedia, Zeckendorf's theorem FORMULA a(n) = n if n is a Fibonacci number, else a( n - (largest Fibonacci number < n) ). a(n) = the value of the (exactly one) digit that turns on between the Fibonacci-base representations of n-1 and n. E.g., from 6 (1001) to 7 (1010), the two's digit turns on. a(n) = top element of the column of the Wythoff array that contains n. a(n) = A000045(A035614(n-1) + 2). [Offsets made precise by Peter Munn, Apr 13 2021] a(n) = A035517(n,0). - Reinhard Zumkeller, Mar 10 2013 EXAMPLE The Zeckendorf representation of 7 = 5 + 2, so a(7) = 2. MAPLE A000045 := proc(n) combinat[fibonacci](n) ; end: A087172 := proc(n) local a, i ; a := 0 ; for i from 0 do if A000045(i) <= n then a := A000045(i) ; else RETURN(a) ; fi ; od: end: A139764 := proc(n) local nResid, prevF ; nResid := n ; while true do prevF := A087172(nResid) ; if prevF = nResid then RETURN(prevF) ; else nResid := nResid-prevF ; fi ; od: end: seq(A139764(n), n=1..120) ; # R. J. Mathar, May 22 2008 MATHEMATICA f[n_] := (k = 1; ff = {}; While[(fi = Fibonacci[k]) <= n, AppendTo[ff, fi]; k++]; Drop[ff, 1]); a[n_] := First[ If[n == 0, 0, r = n; s = {}; fr = f[n]; While[r > 0, lf = Last[fr]; If[lf <= r, r = r - lf; PrependTo[s, lf]]; fr = Drop[fr, -1]]; s]]; Table[a[n], {n, 1, 89}] (* Jean-François Alcover, Nov 02 2011 *) PROG (PARI) a(n)=my(f); forstep(k=log(n*sqrt(5))\log(1.61803)+2, 2, -1, f=fibonacci(k); if(f<=n, n-=f; if(!n, return(f)); k--)) \\ Charles R Greathouse IV, Nov 02 2011 (Haskell) a139764 = head . a035517_row -- Reinhard Zumkeller, Mar 10 2013 CROSSREFS Cf. A000045, A035614, A107017, A014417, A006519. Cf. A087172. Sequence in context: A328731 A140706 A200068 * A227643 A249386 A089026 Adjacent sequences: A139761 A139762 A139763 * A139765 A139766 A139767 KEYWORD nonn,nice AUTHOR Steve Witham (sw(AT)tiac.net), May 15 2008 EXTENSIONS More terms from T. D. Noe and R. J. Mathar, May 22 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 21 13:52 EST 2024. Contains 370235 sequences. (Running on oeis4.)