login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A035517 Triangular array read by rows, formed from Zeckendorf expansion of integers: repeatedly subtract the largest Fibonacci number you can until nothing remains. Row n give Z. expansion of n. 33
0, 1, 2, 3, 1, 3, 5, 1, 5, 2, 5, 8, 1, 8, 2, 8, 3, 8, 1, 3, 8, 13, 1, 13, 2, 13, 3, 13, 1, 3, 13, 5, 13, 1, 5, 13, 2, 5, 13, 21, 1, 21, 2, 21, 3, 21, 1, 3, 21, 5, 21, 1, 5, 21, 2, 5, 21, 8, 21, 1, 8, 21, 2, 8, 21, 3, 8, 21, 1, 3, 8, 21, 34, 1, 34, 2, 34, 3, 34, 1, 3, 34, 5, 34, 1, 5, 34, 2, 5, 34 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Row n has A007895(n) terms.

With the 2nd Maple program, B(n) yields the number of terms in the Zeckendorf expansion of n, while Z(n) yields the expansion itself. For example, B(100)=3 and Z(100)=3, 8, 89. [Emeric Deutsch, Jul 05 2010]

REFERENCES

Zeckendorf, E., Représentation des nombres naturels par une somme des nombres de Fibonacci ou de nombres de Lucas, Bull. Soc. Roy. Sci. Liège 41, 179-182, 1972.

LINKS

T. D. Noe, Rows n=0..1000 of triangle, flattened

D. E. Knuth, Fibonacci multiplication, Appl. Math. Lett. 1 (1988), 57-60.

N. J. A. Sloane, Classic Sequences

EXAMPLE

0=0; 1=1; 2=2; 3=3; 4=1+3; 5=5; 6=1+5; 7=2+5; 8=8; 9=1+8; 10=2+8; ... so triangle begins

0

1

2

3

1 3

5

1 5

2 5

8

1 8

2 8

3 8

1 3 8

MAPLE

with(combinat): B := proc (n) local A, ct, m, j: A := proc (n) local i: for i while fibonacci(i) <= n do n-fibonacci(i) end do end proc: ct := 0: m := n: for j while 0 < A(m) do ct := ct+1: m := A(m) end do: ct+1 end proc: F := proc (n) local i: for i while fibonacci(i) <= n do fibonacci(i) end do end proc: Z := proc (n) local j, z: for j to B(n) do z[j] := F(n-add(z[i], i = 1 .. j-1)) end do: seq(z[B(n)+1-k], k = 1 .. B(n)) end proc: for n to 25 do Z(n) end do;

# Emeric Deutsch, Jul 05 2010

# yields sequence in triangular form; end of this Maple program

MATHEMATICA

f[n_] := (k=1; ff={}; While[(fi = Fibonacci[k]) <= n, AppendTo[ff, fi]; k++]; Drop[ff, 1]); ro[n_] := If[n == 0, 0, r = n; s = {}; fr = f[n];

While[r > 0, lf = Last[fr]; If[lf <= r, r = r - lf; PrependTo[s, lf]]; fr = Drop[fr, -1]]; s]; Flatten[ro /@ Range[0, 42]] (* Jean-François Alcover, Jul 23 2011 *)

PROG

(Haskell)

a035517 n k = a035517_tabf !! n !! k

a035517_row n = a035517_tabf !! n

a035517_tabf = map reverse a035516_tabf

-- Reinhard Zumkeller, Mar 10 2013

CROSSREFS

Cf. A014417, A007895, A035514, A035515, A035516.

Sequence in context: A050375 A154722 A194760 * A099471 A243574 A121775

Adjacent sequences:  A035514 A035515 A035516 * A035518 A035519 A035520

KEYWORD

nonn,easy,tabf,nice,look

AUTHOR

N. J. A. Sloane.

EXTENSIONS

More terms from James A. Sellers, Dec 13 1999

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 12 16:18 EST 2017. Contains 295939 sequences.