This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A035517 Triangular array read by rows, formed from Zeckendorf expansion of integers: repeatedly subtract the largest Fibonacci number you can until nothing remains. Row n give Z. expansion of n. 33

%I

%S 0,1,2,3,1,3,5,1,5,2,5,8,1,8,2,8,3,8,1,3,8,13,1,13,2,13,3,13,1,3,13,5,

%T 13,1,5,13,2,5,13,21,1,21,2,21,3,21,1,3,21,5,21,1,5,21,2,5,21,8,21,1,

%U 8,21,2,8,21,3,8,21,1,3,8,21,34,1,34,2,34,3,34,1,3,34,5,34,1,5,34,2,5,34

%N Triangular array read by rows, formed from Zeckendorf expansion of integers: repeatedly subtract the largest Fibonacci number you can until nothing remains. Row n give Z. expansion of n.

%C Row n has A007895(n) terms.

%C With the 2nd Maple program, B(n) yields the number of terms in the Zeckendorf expansion of n, while Z(n) yields the expansion itself. For example, B(100)=3 and Z(100)=3, 8, 89. [_Emeric Deutsch_, Jul 05 2010]

%D Zeckendorf, E., Représentation des nombres naturels par une somme des nombres de Fibonacci ou de nombres de Lucas, Bull. Soc. Roy. Sci. Liège 41, 179-182, 1972.

%H T. D. Noe, <a href="/A035517/b035517.txt">Rows n=0..1000 of triangle, flattened</a>

%H D. E. Knuth, <a href="http://dx.doi.org/10.1016/0893-9659(88)90176-0">Fibonacci multiplication</a>, Appl. Math. Lett. 1 (1988), 57-60.

%H N. J. A. Sloane, <a href="/classic.html#WYTH">Classic Sequences</a>

%e 0=0; 1=1; 2=2; 3=3; 4=1+3; 5=5; 6=1+5; 7=2+5; 8=8; 9=1+8; 10=2+8; ... so triangle begins

%e 0

%e 1

%e 2

%e 3

%e 1 3

%e 5

%e 1 5

%e 2 5

%e 8

%e 1 8

%e 2 8

%e 3 8

%e 1 3 8

%p with(combinat): B := proc (n) local A, ct, m, j: A := proc (n) local i: for i while fibonacci(i) <= n do n-fibonacci(i) end do end proc: ct := 0: m := n: for j while 0 < A(m) do ct := ct+1: m := A(m) end do: ct+1 end proc: F := proc (n) local i: for i while fibonacci(i) <= n do fibonacci(i) end do end proc: Z := proc (n) local j, z: for j to B(n) do z[j] := F(n-add(z[i], i = 1 .. j-1)) end do: seq(z[B(n)+1-k], k = 1 .. B(n)) end proc: for n to 25 do Z(n) end do;

%p # _Emeric Deutsch_, Jul 05 2010

%p # yields sequence in triangular form; end of this Maple program

%t f[n_] := (k=1; ff={}; While[(fi = Fibonacci[k]) <= n, AppendTo[ff, fi]; k++]; Drop[ff,1]); ro[n_] := If[n == 0, 0, r = n; s = {}; fr = f[n];

%t While[r > 0, lf = Last[fr]; If[lf <= r, r = r - lf; PrependTo[s, lf]]; fr = Drop[fr,-1]]; s]; Flatten[ro /@ Range[0, 42]] (* _Jean-François Alcover_, Jul 23 2011 *)

%o a035517 n k = a035517_tabf !! n !! k

%o a035517_row n = a035517_tabf !! n

%o a035517_tabf = map reverse a035516_tabf

%o -- _Reinhard Zumkeller_, Mar 10 2013

%Y Cf. A014417, A007895, A035514, A035515, A035516.

%K nonn,easy,tabf,nice,look

%O 0,3

%A _N. J. A. Sloane_.

%E More terms from _James A. Sellers_, Dec 13 1999

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 21 02:59 EST 2019. Contains 319344 sequences. (Running on oeis4.)