Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #47 May 01 2021 17:52:00
%S 1,2,3,1,5,1,2,8,1,2,3,1,13,1,2,3,1,5,1,2,21,1,2,3,1,5,1,2,8,1,2,3,1,
%T 34,1,2,3,1,5,1,2,8,1,2,3,1,13,1,2,3,1,5,1,2,55,1,2,3,1,5,1,2,8,1,2,3,
%U 1,13,1,2,3,1,5,1,2,21,1,2,3,1,5,1,2,8,1,2,3,1,89
%N Smallest term in Zeckendorf representation of n.
%C Also called a "Fibonacci fractal".
%C Appears to be the same as the "ruler of Fibonaccis" mentioned by Knuth. - _N. J. A. Sloane_, Aug 03 2012
%C a(n) is also the number of matches to take away to win in a certain match game (see Rocher et al.).
%C The frequencies of occurrences of the values in this sequence and A035614 are related by the golden ratio.
%D D. E. Knuth, The Art of Computer Programming, Vol. 4A, Section 7.1.3, p. 82, solution to Problem 179. - From _N. J. A. Sloane_, Aug 03 2012
%H Steve Witham, <a href="/A139764/b139764.txt">Table of n, a(n) for n = 1..9999</a>
%H Alex Bogomolny, <a href="http://www.cut-the-knot.org/Curriculum/Games/TakeAway.shtml#theory">Theory of Take-Away Games</a>
%H Sylvain Rocher, Elodie Privat, Laurent Orban, Alexandre Mothe and Laurent Thouy, <a href="http://mathematiques.ac-bordeaux.fr/elv/clubs/mej/mej2005/allumettes.pdf">La stratégie des allumettes</a>
%H A. J. Schwenk, <a href="http://www.fq.math.ca/Scanned/8-3/schwenk-a.pdf">Take-Away Games</a>, The Fibonacci Quarterly, v 8, no 3 (1970), 225-234.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/WythoffArray.html">Wythoff Array</a>
%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Zeckendorf's_theorem">Zeckendorf's theorem</a>
%F a(n) = n if n is a Fibonacci number, else a( n - (largest Fibonacci number < n) ).
%F a(n) = the value of the (exactly one) digit that turns on between the Fibonacci-base representations of n-1 and n. E.g., from 6 (1001) to 7 (1010), the two's digit turns on.
%F a(n) = top element of the column of the Wythoff array that contains n.
%F a(n) = A000045(A035614(n-1) + 2). [Offsets made precise by _Peter Munn_, Apr 13 2021]
%F a(n) = A035517(n,0). - _Reinhard Zumkeller_, Mar 10 2013
%e The Zeckendorf representation of 7 = 5 + 2, so a(7) = 2.
%p A000045 := proc(n) combinat[fibonacci](n) ; end:
%p A087172 := proc(n)
%p local a,i ;
%p a := 0 ;
%p for i from 0 do
%p if A000045(i) <= n then
%p a := A000045(i) ;
%p else
%p RETURN(a) ;
%p fi ;
%p od:
%p end:
%p A139764 := proc(n)
%p local nResid,prevF ;
%p nResid := n ;
%p while true do
%p prevF := A087172(nResid) ;
%p if prevF = nResid then
%p RETURN(prevF) ;
%p else
%p nResid := nResid-prevF ;
%p fi ;
%p od:
%p end:
%p seq(A139764(n),n=1..120) ;
%p # _R. J. Mathar_, May 22 2008
%t f[n_] := (k = 1; ff = {}; While[(fi = Fibonacci[k]) <= n, AppendTo[ff, fi]; k++]; Drop[ff, 1]); a[n_] := First[ If[n == 0, 0, r = n; s = {}; fr = f[n]; While[r > 0, lf = Last[fr]; If[lf <= r, r = r - lf; PrependTo[s, lf]]; fr = Drop[fr, -1]]; s]]; Table[a[n], {n, 1, 89}] (* _Jean-François Alcover_, Nov 02 2011 *)
%o (PARI) a(n)=my(f);forstep(k=log(n*sqrt(5))\log(1.61803)+2, 2, -1, f=fibonacci(k);if(f<=n,n-=f;if(!n,return(f));k--)) \\ _Charles R Greathouse IV_, Nov 02 2011
%o (Haskell)
%o a139764 = head . a035517_row -- _Reinhard Zumkeller_, Mar 10 2013
%Y Cf. A000045, A035614, A107017, A014417, A006519.
%Y Cf. A087172.
%K nonn,nice
%O 1,2
%A Steve Witham (sw(AT)tiac.net), May 15 2008
%E More terms from _T. D. Noe_ and _R. J. Mathar_, May 22 2008