The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A035614 Horizontal para-Fibonacci sequence: says which column of Wythoff array (starting column count at 0) contains n+1. 13
 0, 1, 2, 0, 3, 0, 1, 4, 0, 1, 2, 0, 5, 0, 1, 2, 0, 3, 0, 1, 6, 0, 1, 2, 0, 3, 0, 1, 4, 0, 1, 2, 0, 7, 0, 1, 2, 0, 3, 0, 1, 4, 0, 1, 2, 0, 5, 0, 1, 2, 0, 3, 0, 1, 8, 0, 1, 2, 0, 3, 0, 1, 4, 0, 1, 2, 0, 5, 0, 1, 2, 0, 3, 0, 1, 6, 0, 1, 2, 0, 3 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS This is probably the same as the "Fibonacci ruler function" mentioned by Knuth. - N. J. A. Sloane, Aug 03 2012 From Amiram Eldar, Mar 10 2021: (Start) a(n) is the number of the trailing zeros in the Zeckendorf representation of (n+1) (A014417). The asymptotic density of the occurrences of k is 1/phi^(k+2), where phi is the golden ratio (A001622). The asymptotic mean of this sequence is phi. (End) REFERENCES D. E. Knuth, The Art of Computer Programming, Vol. 4A, Section 7.1.3, p. 82, solution to Problem 179. LINKS Reinhard Zumkeller, Table of n, a(n) for n = 0..10000 Casey Mongoven, Sonification of multiple Fibonacci-related sequences, Annales Mathematicae et Informaticae, 41 (2013) pp. 175-192. N. J. A. Sloane, Classic Sequences FORMULA The segment between the first M and the first M+1 is given by the segment before the first M-1. a(n) = A122840(A014417(n + 1)). - Indranil Ghosh, Jun 09 2017 MATHEMATICA max = 81; wy = Table[(n-k)*Fibonacci[k] + Fibonacci[k+1]*Floor[ GoldenRatio*(n - k + 1)], {n, 1, max}, {k, 1, n}]; a[n_] := Position[wy, n][[1, 2]]-1; Table[a[n], {n, 1, max}] (* Jean-François Alcover, Nov 02 2011 *) PROG (Haskell) a035614 = a122840 . a014417 . (+ 1)  -- Reinhard Zumkeller, Mar 10 2013 (Python) from sympy import fibonacci def a122840(n): return len(str(n)) - len(str(int(str(n)[::-1]))) def a014417(n):     k=0     x=0     while n>0:         k=0         while fibonacci(k)<=n: k+=1         x+=10**(k - 3)         n-=fibonacci(k - 1)     return x def a(n): return a122840(a014417(n + 1)) # Indranil Ghosh, Jun 09 2017, after Haskell code by Reinhard Zumkeller CROSSREFS Cf. A000045, A001622, A014417, A019586, A035513, A035612, A122840, A139764. Sequence in context: A339662 A336316 A236138 * A212138 A133735 A238801 Adjacent sequences:  A035611 A035612 A035613 * A035615 A035616 A035617 KEYWORD nonn,nice,easy,changed AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 1 11:02 EDT 2022. Contains 357147 sequences. (Running on oeis4.)