login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A035612 Horizontal para-Fibonacci sequence: says which column of Wythoff array (starting column count at 1) contains n. 7
1, 2, 3, 1, 4, 1, 2, 5, 1, 2, 3, 1, 6, 1, 2, 3, 1, 4, 1, 2, 7, 1, 2, 3, 1, 4, 1, 2, 5, 1, 2, 3, 1, 8, 1, 2, 3, 1, 4, 1, 2, 5, 1, 2, 3, 1, 6, 1, 2, 3, 1, 4, 1, 2, 9, 1, 2, 3, 1, 4, 1, 2, 5, 1, 2, 3, 1, 6, 1, 2, 3, 1, 4, 1, 2, 7, 1, 2, 3, 1, 4, 1, 2, 5, 1, 2, 3, 1, 10, 1, 2, 3, 1, 4, 1, 2, 5, 1, 2 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Ordinal transform of A003603. Removing all 1's from this sequence and decrementing the remaining numbers generates the original sequence. - Franklin T. Adams-Watters, Aug 10 2012

a(A022342(n)) > 1; a(A026274(n) + 1) = 1. - Reinhard Zumkeller, Jul 20 2015

It can be shown that a(n) is the index of the smallest Fibonacci number used in the Zeckendorf representation of n, where f(0)=f(1)=1. - Rachel Chaiser, Aug 18 2017

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 1..10000

Paul Curtz, Comments on A035612, Jan 25 2016

N. J. A. Sloane, My favorite integer sequences, in Sequences and their Applications (Proceedings of SETA '98).

N. J. A. Sloane, Classic Sequences

FORMULA

The segment between the first M and the first M+1 is given by the segment before the first M-1.

a(n) = v2(A022340(n)), where v2(n) = A007814(n), the dyadic valuation of n. - Ralf Stephan, Jun 20 2004. In other words, a(n) = A007814(A003714(n)) + 1, which is certainly true. - Don Reble, Nov 12 2005

From Rachel Chaiser, Aug 18 2017: (Start)

a(n) = a(p(n))+1 if n = b(p(n)) where p(n) = floor((n+2)/phi)-1 and b(n) = floor((n+1)*phi)-1 where phi=(1+sqrt(5))/2; a(n)=1 otherwise.

a(n) = 2 + n_{a(n)+2} + s_z(n-1) - s_z(n) + s_z(p(n-1)) - s_z(p(n)), where s_z(n) is the Zeckendorf sum of digits of n (A007895), and n_{a(n)+2} is the digit in position a(n)+2 of the Zeckendorf representation of n. (End)

EXAMPLE

After the first 6 we see "1 2 3 1 4 1 2" then 7.

MATHEMATICA

f[1] = {1}; f[2] = {1, 2}; f[n_] := f[n] = Join[f[n-1], Most[f[n-2]], {n}]; f[11](* Jean-Fran├žois Alcover, Feb 22 2012 *)

PROG

(Haskell)

a035612 = a007814 . a022340

-- Reinhard Zumkeller, Jul 20 2015, Mar 10 2013

CROSSREFS

Cf. A019586, A035513, A035614.

Cf. A000045.

Cf. A007814, A022340, A022342, A026274.

Cf. A000012, A000027, A001045, A001610, A003622, A023548, A035614, A255671, A268034.

Sequence in context: A138967 A274913 A265105 * A199539 A089555 A098554

Adjacent sequences:  A035609 A035610 A035611 * A035613 A035614 A035615

KEYWORD

nonn,nice,easy

AUTHOR

J. H. Conway, N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 16 07:41 EST 2017. Contains 296076 sequences.