|
|
A035612
|
|
Horizontal para-Fibonacci sequence: says which column of Wythoff array (starting column count at 1) contains n.
|
|
13
|
|
|
1, 2, 3, 1, 4, 1, 2, 5, 1, 2, 3, 1, 6, 1, 2, 3, 1, 4, 1, 2, 7, 1, 2, 3, 1, 4, 1, 2, 5, 1, 2, 3, 1, 8, 1, 2, 3, 1, 4, 1, 2, 5, 1, 2, 3, 1, 6, 1, 2, 3, 1, 4, 1, 2, 9, 1, 2, 3, 1, 4, 1, 2, 5, 1, 2, 3, 1, 6, 1, 2, 3, 1, 4, 1, 2, 7, 1, 2, 3, 1, 4, 1, 2, 5, 1, 2, 3, 1, 10, 1, 2, 3, 1, 4, 1, 2, 5, 1, 2
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Ordinal transform of A003603. Removing all 1's from this sequence and decrementing the remaining numbers generates the original sequence. - Franklin T. Adams-Watters, Aug 10 2012
It can be shown that a(n) is the index of the smallest Fibonacci number used in the Zeckendorf representation of n, where f(0)=f(1)=1. - Rachel Chaiser, Aug 18 2017
|
|
LINKS
|
|
|
FORMULA
|
The segment between the first M and the first M+1 is given by the segment before the first M-1.
a(n) = a(p(n))+1 if n = b(p(n)) where p(n) = floor((n+2)/phi)-1 and b(n) = floor((n+1)*phi)-1 where phi=(1+sqrt(5))/2; a(n)=1 otherwise.
a(n) = 3 - n_1 + s_z(n-1) - s_z(n) + s_z(p(n-1)) - s_z(p(n)), where s_z(n) is the Zeckendorf sum of digits of n (A007895), and n_1 is the least significant digit in the Zeckendorf representation of n. (End)
|
|
EXAMPLE
|
After the first 6 we see "1 2 3 1 4 1 2" then 7.
|
|
MATHEMATICA
|
f[1] = {1}; f[2] = {1, 2}; f[n_] := f[n] = Join[f[n-1], Most[f[n-2]], {n}]; f[11] (* Jean-François Alcover, Feb 22 2012 *)
|
|
PROG
|
(Haskell)
a035612 = a007814 . a022340
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,nice,easy
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|