login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Horizontal para-Fibonacci sequence: says which column of Wythoff array (starting column count at 1) contains n.
14

%I #63 Nov 05 2023 11:35:38

%S 1,2,3,1,4,1,2,5,1,2,3,1,6,1,2,3,1,4,1,2,7,1,2,3,1,4,1,2,5,1,2,3,1,8,

%T 1,2,3,1,4,1,2,5,1,2,3,1,6,1,2,3,1,4,1,2,9,1,2,3,1,4,1,2,5,1,2,3,1,6,

%U 1,2,3,1,4,1,2,7,1,2,3,1,4,1,2,5,1,2,3,1,10,1,2,3,1,4,1,2,5,1,2

%N Horizontal para-Fibonacci sequence: says which column of Wythoff array (starting column count at 1) contains n.

%C Ordinal transform of A003603. Removing all 1's from this sequence and decrementing the remaining numbers generates the original sequence. - _Franklin T. Adams-Watters_, Aug 10 2012

%C It can be shown that a(n) is the index of the smallest Fibonacci number used in the Zeckendorf representation of n, where f(0)=f(1)=1. - _Rachel Chaiser_, Aug 18 2017

%C The asymptotic density of the occurrences of k = 1, 2, ..., is (2-phi)/phi^(k-1), where phi is the golden ratio (A001622). The asymptotic mean of this sequence is 1 + phi (A104457). - _Amiram Eldar_, Nov 02 2023

%H Reinhard Zumkeller, <a href="/A035612/b035612.txt">Table of n, a(n) for n = 1..10000</a>

%H Paul Curtz, <a href="/A035612/a035612.txt">Comments on A035612, Jan 25 2016</a>.

%H N. J. A. Sloane, <a href="http://neilsloane.com/doc/sg.txt">My favorite integer sequences</a>, in Sequences and their Applications (Proceedings of SETA '98).

%H N. J. A. Sloane, <a href="/classic.html#WYTH">Classic Sequences</a>.

%F The segment between the first M and the first M+1 is given by the segment before the first M-1.

%F a(A022342(n)) > 1; a(A026274(n) + 1) = 1. - _Reinhard Zumkeller_, Jul 20 2015

%F a(n) = v2(A022340(n)), where v2(n) = A007814(n), the dyadic valuation of n. - _Ralf Stephan_, Jun 20 2004. In other words, a(n) = A007814(A003714(n)) + 1, which is certainly true. - _Don Reble_, Nov 12 2005

%F From _Rachel Chaiser_, Aug 18 2017: (Start)

%F a(n) = a(p(n))+1 if n = b(p(n)) where p(n) = floor((n+2)/phi)-1 and b(n) = floor((n+1)*phi)-1 where phi=(1+sqrt(5))/2; a(n)=1 otherwise.

%F a(n) = 3 - n_1 + s_z(n-1) - s_z(n) + s_z(p(n-1)) - s_z(p(n)), where s_z(n) is the Zeckendorf sum of digits of n (A007895), and n_1 is the least significant digit in the Zeckendorf representation of n. (End)

%e After the first 6 we see "1 2 3 1 4 1 2" then 7.

%t f[1] = {1}; f[2] = {1, 2}; f[n_] := f[n] = Join[f[n-1], Most[f[n-2]], {n}]; f[11] (* _Jean-François Alcover_, Feb 22 2012 *)

%o (Haskell)

%o a035612 = a007814 . a022340

%o -- _Reinhard Zumkeller_, Jul 20 2015, Mar 10 2013

%Y Cf. A019586, A035513, A035614.

%Y Cf. A000045, A003603.

%Y Cf. A003714, A007814, A022340, A022342, A026274.

%Y Cf. A000012, A000027, A001045, A001610, A003622, A023548, A255671, A268034.

%Y Cf. A001622, A104457, A132338.

%K nonn,nice,easy

%O 1,2

%A _J. H. Conway_ and _N. J. A. Sloane_

%E Formula corrected by _Tom Edgar_, Jul 09 2018