The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A035611 Coordination sequence for lattice D*_22 (with edges defined by l_1 norm = 1). 0
1, 44, 968, 14212, 156816, 1388508, 10286936, 65652532, 368804128, 1854105484, 8453107432, 35333619428, 136677756336, 493244610364, 1672424817272, 5360494538388, 16327295550016, 47469373288172, 132235461020168, 354093052356164, 913949931165392, 2279318877511324, 5504063080258968, 12893712963761652 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
LINKS
Joan Serra-Sagrista, Enumeration of lattice points in l_1 norm, Inf. Proc. Lett. 76 (1-2) (2000) 39-44.
Index entries for linear recurrences with constant coefficients, signature (22, -231, 1540, -7315, 26334, -74613, 170544, -319770, 497420, -646646, 705432, -646646, 497420, -319770, 170544, -74613, 26334, -7315, 1540, -231, 22, -1).
FORMULA
a(m) = add(2^k*binomial(n, k)*binomial(m-1, k-1), k=0..n)+2^n*binomial((n+2*m)/2-1, n-1); with n=22.
MAPLE
C := (m, n) -> `if`(m=0, 1, 2^n*binomial((n+2*m)/2-1, n-1) + 2*n*hypergeom([1-m, 1-n], [2], 2)): seq(simplify(C(m, 22)), m=0..21); # Peter Luschny, Jul 18 2020
MATHEMATICA
n:=22; Table[Sum[2^k*Binomial[n, k]*Binomial[m-1, k-1], {k, 0, n}] + 2^n*Binomial[(n+2*m)/2-1, n-1], {m, 0, n+2}] (* Georg Fischer, Jul 18 2020 *)
CROSSREFS
Sequence in context: A299466 A010960 A035717 * A161679 A162182 A162413
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, J. Serra-Sagrista (jserra(AT)ccd.uab.es)
EXTENSIONS
More terms from Georg Fischer, Jul 18 2020
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 21 07:02 EDT 2024. Contains 372729 sequences. (Running on oeis4.)