|
|
A162413
|
|
Number of reduced words of length n in the Weyl group D_44.
|
|
0
|
|
|
1, 44, 989, 15136, 177374, 1697080, 13804461, 98156916, 622600869, 3577478696, 18848352755, 91943892924, 418593879770, 1790510819500, 7236416033496, 27766992285908, 101579448507141, 355579239690840, 1194844427708580
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Computed with MAGMA using commands similar to those used to compute A161409.
|
|
REFERENCES
|
N. Bourbaki, Groupes et alg. de Lie, Chap. 4, 5, 6. (The group is defined in Planche IV.)
J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under Poincaré polynomial.
|
|
LINKS
|
Table of n, a(n) for n=0..18.
|
|
FORMULA
|
G.f. for D_m is the polynomial f(n) * Product( f(2i), i=1..n-1 )/ f(1)^n, where f(k) = 1-x^k. Only finitely many terms are nonzero. This is a row of the triangle in A162206.
|
|
CROSSREFS
|
Sequence in context: A035611 A161679 A162182 * A010996 A295251 A295650
Adjacent sequences: A162410 A162411 A162412 * A162414 A162415 A162416
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
John Cannon and N. J. A. Sloane, Dec 01 2009
|
|
STATUS
|
approved
|
|
|
|