login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A162367 Number of reduced words of length n in the Weyl group D_25. 31
1, 25, 324, 2900, 20149, 115805, 572975, 2507895, 9904050, 35818770, 120016066, 376029250, 1110031585, 3106677225, 8286768736, 21161266240, 51931463950, 122883804990, 281186004075, 623785796595, 1344621849285, 2822018693325 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

REFERENCES

N. Bourbaki, Groupes et alg. de Lie, Chap. 4, 5, 6. (The group is defined in Planche IV.)

J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under Poincaré polynomial.

LINKS

Table of n, a(n) for n=0..21.

Index entries for growth series for groups

FORMULA

The growth series for D_k is the polynomial f(k)*Prod_{i=1..k-1} f(2*i), where f(m) = (1-x^m)/(1-x) [Corrected by N. J. A. Sloane, Aug 07 2021]. This is a row of the triangle in A162206.

MAPLE

# Growth series for D_k, truncated to terms of order M. - N. J. A. Sloane, Aug 07 2021

f := proc(m::integer) (1-x^m)/(1-x) ; end proc:

g := proc(k, M) local a, i; global f;

a:=f(k)*mul(f(2*i), i=1..k-1);

seriestolist(series(a, x, M+1));

end proc;

CROSSREFS

Growth series for groups D_n, n = 3,...,32: A161435, A162207, A162208, A162209, A162210, A162211, A162212, A162248, A162288, A162297, A162300, A162301, A162321, A162327, A162328, A162346, A162347, A162359, A162360, A162364, A162365, A162366, A162367, A162368, A162369, A162370, A162376, A162377, A162378, A162379; also A162206

Sequence in context: A246625 A161525 A161932 * A263404 A077503 A262054

Adjacent sequences:  A162364 A162365 A162366 * A162368 A162369 A162370

KEYWORD

nonn

AUTHOR

John Cannon and N. J. A. Sloane, Dec 01 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 18 19:27 EDT 2022. Contains 356215 sequences. (Running on oeis4.)