login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A162346
Number of reduced words of length n in the Weyl group D_18.
50
1, 18, 170, 1122, 5813, 25176, 94791, 318630, 974643, 2752112, 7253764, 18003544, 42378246, 95162260, 204856291, 424515042, 849825768, 1648470894, 3106669574, 5701318526, 10209535012, 17871859722, 30631153147, 51476598044, 84931517948
OFFSET
0,2
REFERENCES
N. Bourbaki, Groupes et alg. de Lie, Chap. 4, 5, 6. (The group is defined in Planche IV.)
J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under Poincaré polynomial.
FORMULA
The growth series for D_k is the polynomial f(k)*Prod_{i=1..k-1} f(2*i), where f(m) = (1-x^m)/(1-x) [Corrected by N. J. A. Sloane, Aug 07 2021]. This is a row of the triangle in A162206.
MAPLE
# Growth series for D_k, truncated to terms of order M. - N. J. A. Sloane, Aug 07 2021
f := proc(m::integer) (1-x^m)/(1-x) ; end proc:
g := proc(k, M) local a, i; global f;
a:=f(k)*mul(f(2*i), i=1..k-1);
seriestolist(series(a, x, M+1));
end proc;
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 01 2009
STATUS
approved