|
|
A162380
|
|
Number of reduced words of length n in the Weyl group D_33.
|
|
0
|
|
|
1, 33, 560, 6512, 58343, 429319, 2701215, 14938495, 74085099, 334526731, 1391777608, 5386279880, 19542335516, 66903867676, 217315477325, 672858527085, 1993883448271, 5674663272047, 15558879389713, 41208936343729
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Computed with MAGMA using commands similar to those used to compute A161409.
|
|
REFERENCES
|
N. Bourbaki, Groupes et alg. de Lie, Chap. 4, 5, 6. (The group is defined in Planche IV.)
J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under Poincaré polynomial.
|
|
LINKS
|
|
|
FORMULA
|
G.f. for D_m is the polynomial f(n) * Product( f(2i), i=1..n-1 )/ f(1)^n, where f(k) = 1-x^k. Only finitely many terms are nonzero. This is a row of the triangle in A162206.
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|