OFFSET
0,2
REFERENCES
N. Bourbaki, Groupes et alg. de Lie, Chap. 4, 5, 6. (The group is defined in Planche IV.)
J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under Poincaré polynomial.
FORMULA
The growth series for D_k is the polynomial f(k)*Prod_{i=1..k-1} f(2*i), where f(m) = (1-x^m)/(1-x) [Corrected by N. J. A. Sloane, Aug 07 2021]. This is a row of the triangle in A162206.
MAPLE
A162212g := proc(m::integer)
(1-x^m)/(1-x) ;
end proc:
A162212 := proc(n, k)
g := A162212g(k);
for m from 2 to 2*k-2 by 2 do
g := g*A162212g(m) ;
end do:
g := expand(g) ;
coeftayl(g, x=0, n) ;
end proc:
seq( A162212(n, 9), n=0..30) ; # R. J. Mathar, Jan 19 2016
# Growth series for D_k, truncated to terms of order M. - N. J. A. Sloane, Aug 07 2021
f := proc(m::integer) (1-x^m)/(1-x) ; end proc:
g := proc(k, M) local a, i; global f;
a:=f(k)*mul(f(2*i), i=1..k-1);
seriestolist(series(a, x, M+1));
end proc;
MATHEMATICA
n = 9;
x = y + y O[y]^(n^2);
(1-x^n) Product[1-x^(2k), {k, 1, n-1}]/(1-x)^n // CoefficientList[#, y]& (* Jean-François Alcover, Mar 25 2020, from A162206 *)
CROSSREFS
The growth series for D_k, k >= 3, are also the rows of the triangle A162206.
Growth series for groups D_n, n = 3,...,50: A161435, A162207, A162208, A162209, A162210, A162211, A162212, A162248, A162288, A162297, A162300, A162301, A162321, A162327, A162328, A162346, A162347, A162359, A162360, A162364, A162365, A162366, A162367, A162368, A162369, A162370, A162376, A162377, A162378, A162379, A162380, A162381, A162384, A162388, A162389, A162392, A162399, A162402, A162403, A162411, A162412, A162413, A162418, A162452, A162456, A162461, A162469, A162492; also A162206.
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 01 2009
STATUS
approved