login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A162212
Number of reduced words of length n in the Weyl group D_9.
50
1, 9, 44, 156, 449, 1113, 2463, 4983, 9372, 16587, 27877, 44802, 69231, 103314, 149425, 210075, 287796, 384999, 503812, 645906, 812319, 1003290, 1218116, 1455045, 1711216, 1982655, 2264333, 2550288, 2833809, 3107676, 3364445
OFFSET
0,2
REFERENCES
N. Bourbaki, Groupes et alg. de Lie, Chap. 4, 5, 6. (The group is defined in Planche IV.)
J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under Poincaré polynomial.
FORMULA
The growth series for D_k is the polynomial f(k)*Prod_{i=1..k-1} f(2*i), where f(m) = (1-x^m)/(1-x) [Corrected by N. J. A. Sloane, Aug 07 2021]. This is a row of the triangle in A162206.
MAPLE
A162212g := proc(m::integer)
(1-x^m)/(1-x) ;
end proc:
A162212 := proc(n, k)
g := A162212g(k);
for m from 2 to 2*k-2 by 2 do
g := g*A162212g(m) ;
end do:
g := expand(g) ;
coeftayl(g, x=0, n) ;
end proc:
seq( A162212(n, 9), n=0..30) ; # R. J. Mathar, Jan 19 2016
# Growth series for D_k, truncated to terms of order M. - N. J. A. Sloane, Aug 07 2021
f := proc(m::integer) (1-x^m)/(1-x) ; end proc:
g := proc(k, M) local a, i; global f;
a:=f(k)*mul(f(2*i), i=1..k-1);
seriestolist(series(a, x, M+1));
end proc;
MATHEMATICA
n = 9;
x = y + y O[y]^(n^2);
(1-x^n) Product[1-x^(2k), {k, 1, n-1}]/(1-x)^n // CoefficientList[#, y]& (* Jean-François Alcover, Mar 25 2020, from A162206 *)
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 01 2009
STATUS
approved