login
A162206
Triangle read by rows in which row n (n >= 1) gives coefficients in expansion of the polynomial f(n) * Product_{i=1..n-1} f(2i), where f(k) = (1 - x^k)/(1-x).
50
1, 1, 2, 1, 1, 3, 5, 6, 5, 3, 1, 1, 4, 9, 16, 23, 28, 30, 28, 23, 16, 9, 4, 1, 1, 5, 14, 30, 54, 85, 120, 155, 185, 205, 212, 205, 185, 155, 120, 85, 54, 30, 14, 5, 1, 1, 6, 20, 50, 104, 190, 314, 478, 679, 908, 1151, 1390, 1605, 1776, 1886, 1924, 1886, 1776
OFFSET
1,3
COMMENTS
For n >= 3, this polynomial is the Poincaré polynomial (or growth series) for the reflection group (or Weyl group, or finite Coxeter group) D_n.
Row lengths are 1, 3, 7, 13, 21, 31, 43, 57, ...: see A002061. - Michel Marcus, May 17 2013
The asymptotic growth of maximum elements for the reflection group D_n is about 2(n-1/2) (compare with A000140). - Mikhail Gaichenkov, Aug 21 2019
Row maxima ~ 2^(n-1)*n!/(sigma * sqrt(3/Pi)), sigma^2 = (4*n^3 - 3*n^2 - n)/36 = variance of D_n. - Mikhail Gaichenkov, Feb 08 2023
REFERENCES
N. Bourbaki, Groupes et Algèbres de Lie, Chap. 4, 5 and 6, Hermann, Paris, 1968. See Chap. VI, Section 4, Problem 10a, page 231, W(t).
J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See Table 3.1, page 59.
LINKS
Marwa Ben Abdelmaksoud and Adel Hamdi, width-k Eulerian polynomials of type A and B and its Gamma-positivity, arXiv:1912.08551 [math.CO], 2019.
Thomas Kahle and Christian Stump, Counting inversions and descents of random elements in finite Coxeter groups, arXiv:1802.01389 [math.CO], 2018-2019.
M. Rubey, St001443: Finite Cartan types ⟶ ℤ, StatisticsDatabase, 2019.
EXAMPLE
Triangle begins:
1;
1, 2, 1;
1, 3, 5, 6, 5, 3, 1;
1, 4, 9, 16, 23, 28, 30, 28, 23, 16, 9, 4, 1;
1, 5, 14, 30, 54, 85, 120, 155, 185, 205, 212, 205, 185, 155, 120, 85, 54, 30, 14, 5, 1;
1, 6, 20, 50, 104, 190, 314, 478, 679, 908, 1151, 1390, 1605, 1776, 1886, 1924, 1886, 1776, 1605, 1390, 1151, 908, 679, 478, 314, 190, 104, 50, 20, 6, 1;
1, 7, 27, 77, 181, 371, 686, 1169, 1862, 2800, 4005, 5481, 7210, 9149, 11230, 13363, 15442, 17353, 18983, 20230, 21013, 21280, 21013, 20230, 18983, 17353, 15442, 13363, 11230, 9149, 7210, 5481, 4005, 2800, 1862, 1169, 686, 371, 181, 77, 27, 7, 1;
MAPLE
# Growth series for D_k, truncated to terms of order M. - N. J. A. Sloane, Aug 07 2021
f := proc(m::integer) (1-x^m)/(1-x) ; end proc:
g := proc(k, M) local a, i; global f;
a:=f(k)*mul(f(2*i), i=1..k-1);
seriestolist(series(a, x, M+1));
end proc;
MATHEMATICA
T[nn_] := Reap[Do[x = y + y O[y]^(n^2); v = (1 - x^n) Product[1 - x^(2k), {k, 1, n - 1}]/(1 - x)^n // CoefficientList[#, y]&; Sow[v], {n, nn}]][[2, 1]];
T[6] // Flatten (* Jean-François Alcover, Mar 25 2020, after PARI *)
T[ n_] := Module[{x}, CoefficientList[ Product[1 - x^(2 k), {k, 1, n - 1}] (1 - x^n) /(1 - x)^n // Expand, x]] (* Michael Somos, Aug 06 2021 *)
PROG
(PARI) {row(n) = Vec(prod(k=1 , n-1, 1-x^(2*k))*(1-x^n)/(1-x)^n)}; /* Michael Somos, Aug 06 2021 */
KEYWORD
nonn,tabf
AUTHOR
John Cannon and N. J. A. Sloane, Nov 30 2009
EXTENSIONS
Revised by N. J. A. Sloane, Jan 10 2016
STATUS
approved