The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60, we have over 367,000 sequences, and we’ve crossed 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A162206 Triangle read by rows in which row n (n >= 1) gives coefficients in expansion of the polynomial f(n) * Product_{i=1..n-1} f(2i), where f(k) = (1 - x^k)/(1-x). 50
 1, 1, 2, 1, 1, 3, 5, 6, 5, 3, 1, 1, 4, 9, 16, 23, 28, 30, 28, 23, 16, 9, 4, 1, 1, 5, 14, 30, 54, 85, 120, 155, 185, 205, 212, 205, 185, 155, 120, 85, 54, 30, 14, 5, 1, 1, 6, 20, 50, 104, 190, 314, 478, 679, 908, 1151, 1390, 1605, 1776, 1886, 1924, 1886, 1776 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS For n >= 3, this polynomial is the Poincaré polynomial (or growth series) for the reflection group (or Weyl group, or finite Coxeter group) D_n. Row lengths are 1, 3, 7, 13, 21, 31, 43, 57, ...: see A002061. - Michel Marcus, May 17 2013 The asymptotic growth of maximum elements for the reflection group D_n is about 2(n-1/2) (compare with A000140). - Mikhail Gaichenkov, Aug 21 2019 Row maxima ~ 2^(n-1)*n!/(sigma * sqrt(3/Pi)), sigma^2 = (4*n^3 - 3*n^2 - n)/36 = variance of D_n. - Mikhail Gaichenkov, Feb 08 2023 REFERENCES N. Bourbaki, Groupes et Algèbres de Lie, Chap. 4, 5 and 6, Hermann, Paris, 1968. See Chap. VI, Section 4, Problem 10a, page 231, W(t). J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See Table 3.1, page 59. LINKS Jean-François Alcover, Table of n, a(n) for n = 1..9020 [30 rows] Marwa Ben Abdelmaksoud and Adel Hamdi, width-k Eulerian polynomials of type A and B and its Gamma-positivity, arXiv:1912.08551 [math.CO], 2019. M. Gaichenkov, The growth of maximum elements for the reflection group \$D_n\$, MathOverflow, 2019. Thomas Kahle and Christian Stump, Counting inversions and descents of random elements in finite Coxeter groups, arXiv:1802.01389 [math.CO], 2018-2019. M. Rubey, St001443: Finite Cartan types ⟶ ℤ, StatisticsDatabase, 2019. Index entries for growth series for groups EXAMPLE Triangle begins: 1; 1, 2, 1; 1, 3, 5, 6, 5, 3, 1; 1, 4, 9, 16, 23, 28, 30, 28, 23, 16, 9, 4, 1; 1, 5, 14, 30, 54, 85, 120, 155, 185, 205, 212, 205, 185, 155, 120, 85, 54, 30, 14, 5, 1; 1, 6, 20, 50, 104, 190, 314, 478, 679, 908, 1151, 1390, 1605, 1776, 1886, 1924, 1886, 1776, 1605, 1390, 1151, 908, 679, 478, 314, 190, 104, 50, 20, 6, 1; 1, 7, 27, 77, 181, 371, 686, 1169, 1862, 2800, 4005, 5481, 7210, 9149, 11230, 13363, 15442, 17353, 18983, 20230, 21013, 21280, 21013, 20230, 18983, 17353, 15442, 13363, 11230, 9149, 7210, 5481, 4005, 2800, 1862, 1169, 686, 371, 181, 77, 27, 7, 1; MAPLE # Growth series for D_k, truncated to terms of order M. - N. J. A. Sloane, Aug 07 2021 f := proc(m::integer) (1-x^m)/(1-x) ; end proc: g := proc(k, M) local a, i; global f; a:=f(k)*mul(f(2*i), i=1..k-1); seriestolist(series(a, x, M+1)); end proc; MATHEMATICA T[nn_] := Reap[Do[x = y + y O[y]^(n^2); v = (1 - x^n) Product[1 - x^(2k), {k, 1, n - 1}]/(1 - x)^n // CoefficientList[#, y]&; Sow[v], {n, nn}]][[2, 1]]; T[6] // Flatten (* Jean-François Alcover, Mar 25 2020, after PARI *) T[ n_] := Module[{x}, CoefficientList[ Product[1 - x^(2 k), {k, 1, n - 1}] (1 - x^n) /(1 - x)^n // Expand, x]] (* Michael Somos, Aug 06 2021 *) PROG {row(n) = Vec(prod(k=1 , n-1, 1-x^(2*k))*(1-x^n)/(1-x)^n)}; /* Michael Somos, Aug 06 2021 */ CROSSREFS growth series for groups D_n, n = 3,...,32: A161435, A162207, A162208, A162209, A162210, A162211, A162212, A162248, A162288, A162297, A162300, A162301, A162321, A162327, A162328, A162346, A162347, A162359, A162360, A162364, A162365, A162366, A162367, A162368, A162369, A162370, A162376, A162377, A162378, A162379; also A162206 Cf. A002061. Sequence in context: A210098 A241188 A145236 * A075248 A359140 A365623 Adjacent sequences: A162203 A162204 A162205 * A162207 A162208 A162209 KEYWORD nonn,tabf AUTHOR John Cannon and N. J. A. Sloane, Nov 30 2009 EXTENSIONS Revised by N. J. A. Sloane, Jan 10 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 1 21:21 EST 2023. Contains 367502 sequences. (Running on oeis4.)