login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A210098
Somos-5 sequence variant: a(n) = (a(n-1) * a(n-4) - a(n-2) * a(n-3)) / a(n-5), a(0) = 0, a(1) = a(2) = a(3) = a(4) = 1, a(5) = 2.
3
0, 1, 1, 1, 1, 2, 1, -1, -3, -5, -4, -11, -13, -7, 23, 86, 87, 199, 415, 799, -152, -4159, -8063, -17047, -38727, -155366, -142471, 445015, 2309453, 7627979, 13609844, 81138437, 187790979, 142104721, -1743980081, -12357952274, -25547499185, -134098256401
OFFSET
0,6
COMMENTS
This is a divisibility sequence; that is, if n divides m, then a(n) divides a(m).
FORMULA
a(n) = -a(-n), a(n) * a(n-5) = a(n-1) * a(n-4) - a(n-2) * a(n-3) for all n in Z.
a(n+4) * a(n-4) = a(n+2) * a(n-2) - a(n) * a(n), a(n+2) * a(n-2) = (2 - (-1)^n) * a(n+1) * a(n-1) - a(n) * a(n) for all n in Z.
EXAMPLE
G.f. = x + x^2 + x^3 + x^4 + 2*x^5 + x^6 - x^7 - 3*x^8 - 5*x^9 - 4*x^10 + ...
MAPLE
a:= proc(n) a(n):= `if`(n<6, [0, 1$4, 2][n+1],
(a(n-1)*a(n-4) -a(n-2)*a(n-3)) / a(n-5))
end:
seq (a(n), n=0..40); # Alois P. Heinz, Oct 20 2012
MATHEMATICA
Join[{0}, RecurrenceTable[{a[1]==a[2]==a[3]==a[4]==1, a[5]==2, a[n] == (a[n-1]a[n-4]-a[n-2]a[n-3])/a[n-5]}, a, {n, 40}]] (* Harvey P. Dale, Oct 20 2012 *)
PROG
(PARI) {a(n) = my(v, m); if( n==0, 0, m = abs(n); sign(n) * if( m<6, 1 + (m>4), v = vector( m, i, 1); v[5] = 2; for( i=6, m, v[i] = (v[i-1] * v[i-4] - v[i-2] * v[i-3]) / v[i-5]); v[m]))};
(Magma) I:=[1, 1, 1, 1, 2]; [n le 5 select I[n] else (Self(n-1)*Self(n-4) - Self(n-2)*Self(n-3))/Self(n-5): n in [1..50]]; // G. C. Greubel, Aug 11 2018
CROSSREFS
Cf. A006721.
Sequence in context: A187066 A187065 A174620 * A241188 A145236 A162206
KEYWORD
sign
AUTHOR
Michael Somos, Mar 17 2012
STATUS
approved