login
A241188
Triangle T(n,s) of Dynkin type D_n read by rows (n >= 2, 0 <= s <= n).
0
1, 2, 1, 1, 3, 5, 5, 1, 4, 9, 16, 20, 1, 5, 14, 30, 55, 77, 1, 6, 20, 50, 105, 196, 294, 1, 7, 27, 77, 182, 378, 714, 1122, 1, 8, 35, 112, 294, 672, 1386, 2640, 4290, 1, 9, 44, 156, 450, 1122, 2508, 5148, 9867, 16445
OFFSET
2,2
LINKS
M. A. A. Obaid, S. K. Nauman, W. M. Fakieh, C. M. Ringel, The numbers of support-tilting modules for a Dynkin algebra, 2014.
M. A. A. Obaid, S. K. Nauman, W. M. Fakieh, C. M. Ringel, The numbers of support-tilting modules for a Dynkin algebra, arXiv:1403.5827 [math.RT], 2014 and J. Int. Seq. 18 (2015) 15.10.6.
FORMULA
T(n,s) = [n+s-2,s] for 0 <= s < n, T(n,n) = [2n-2,n-2], where [t,s] stands for binomial(t,s)*(s+t)/t.
EXAMPLE
Triangle begins:
1, 2, 1,
1, 3, 5, 5,
1, 4, 9, 16, 20,
1, 5, 14, 30, 55, 77,
1, 6, 20, 50, 105, 196, 294,
1, 7, 27, 77, 182, 378, 714, 1122,
1, 8, 35, 112, 294, 672, 1386, 2640, 4290,
1, 9, 44, 156, 450, 1122, 2508, 5148, 9867, 16445,
...
MATHEMATICA
f[t_, s_] := Binomial[t, s] (s + t)/t;
T[_, 0] = 1; T[n_, n_] := f[2 n - 2, n - 2]; T[n_, s_] := f[n + s - 2, s];
Table[T[n, s], {n, 2, 9}, {s, 0, n}] // Flatten (* Jean-François Alcover, Feb 12 2019 *)
CROSSREFS
See A009766 for the case of type A.
See A059481 for the case of type B/C.
Diagonals give A029869, A051960, A029651, A051924. Row sums are also A051924.
Sequence in context: A187065 A174620 A210098 * A145236 A162206 A075248
KEYWORD
nonn,tabf
AUTHOR
N. J. A. Sloane, Apr 24 2014
STATUS
approved