Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #30 Jun 03 2019 09:07:25
%S 1,2,1,1,3,5,5,1,4,9,16,20,1,5,14,30,55,77,1,6,20,50,105,196,294,1,7,
%T 27,77,182,378,714,1122,1,8,35,112,294,672,1386,2640,4290,1,9,44,156,
%U 450,1122,2508,5148,9867,16445
%N Triangle T(n,s) of Dynkin type D_n read by rows (n >= 2, 0 <= s <= n).
%H M. A. A. Obaid, S. K. Nauman, W. M. Fakieh, C. M. Ringel, <a href="http://www.math.uni-bielefeld.de/~ringel/opus/jeddah.pdf">The numbers of support-tilting modules for a Dynkin algebra</a>, 2014.
%H M. A. A. Obaid, S. K. Nauman, W. M. Fakieh, C. M. Ringel, <a href="http://arxiv.org/abs/1403.5827">The numbers of support-tilting modules for a Dynkin algebra</a>, arXiv:1403.5827 [math.RT], 2014 and <a href="https://cs.uwaterloo.ca/journals/JIS/VOL18/Ringel/ringel22.html">J. Int. Seq. 18 (2015) 15.10.6</a>.
%F T(n,s) = [n+s-2,s] for 0 <= s < n, T(n,n) = [2n-2,n-2], where [t,s] stands for binomial(t,s)*(s+t)/t.
%e Triangle begins:
%e 1, 2, 1,
%e 1, 3, 5, 5,
%e 1, 4, 9, 16, 20,
%e 1, 5, 14, 30, 55, 77,
%e 1, 6, 20, 50, 105, 196, 294,
%e 1, 7, 27, 77, 182, 378, 714, 1122,
%e 1, 8, 35, 112, 294, 672, 1386, 2640, 4290,
%e 1, 9, 44, 156, 450, 1122, 2508, 5148, 9867, 16445,
%e ...
%t f[t_, s_] := Binomial[t, s] (s + t)/t;
%t T[_, 0] = 1; T[n_, n_] := f[2 n - 2, n - 2]; T[n_, s_] := f[n + s - 2, s];
%t Table[T[n, s], {n, 2, 9}, {s, 0, n}] // Flatten (* _Jean-François Alcover_, Feb 12 2019 *)
%Y See A009766 for the case of type A.
%Y See A059481 for the case of type B/C.
%Y Diagonals give A029869, A051960, A029651, A051924. Row sums are also A051924.
%K nonn,tabf
%O 2,2
%A _N. J. A. Sloane_, Apr 24 2014