|
|
A051960
|
|
a(n) = C(n)*(3n+2) where C(n) = Catalan numbers = A000108.
|
|
8
|
|
|
2, 5, 16, 55, 196, 714, 2640, 9867, 37180, 140998, 537472, 2057510, 7904456, 30458900, 117675360, 455657715, 1767883500, 6871173870, 26747767200, 104268528210, 406975466040, 1590307356300, 6220814327520, 24357232569150, 95452906901976, 374369872911804
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
If Y is a fixed 2-subset of a 2n-set X then a(n-1) is the number of n-subsets of X intersecting Y. - Milan Janjic, Oct 21 2007
a(n-1) is the number of vertices in the n-dimensional halohedron (or equivalently, n-cycle cubeahedron). - Vincent Pilaud, May 12 2020
|
|
REFERENCES
|
A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
|
|
LINKS
|
Robert Israel, Table of n, a(n) for n = 0..1600
Moa Apagodu and Doron Zeilberger, Using the "Freshman's Dream" to Prove Combinatorial Congruences, arXiv:1606.03351 [math.CO], 2016. Also Amer. Math. Monthly. 124 (2017), 597-608.
Satyan L. Devadoss, Timothy Heath, and Cid Vipismakul, Deformations of bordered Riemann surfaces and associahedral polytopes, arXiv:1002.1676 [math.AG], 2010.
S. L. Devadoss, T. Heath, and W. Vipismakul, Deformations of bordered surfaces and convex polytopes, Notices Amer. Math. Soc. 58 (2011), no. 4, 530-541.
S. B. Ekhad and M. Yang, Proofs of Linear Recurrences of Coefficients of Certain Algebraic Formal Power Series Conjectured in the On-Line Encyclopedia Of Integer Sequences, (2017)
Milan Janjic, Two Enumerative Functions
Milan Janjić, On Restricted Ternary Words and Insets, arXiv:1905.04465 [math.CO], 2019.
|
|
FORMULA
|
(n+1)*a(n) - 2*(n+2)*a(n-1) - 4*(2*n-3)*a(n-2) = 0. - conjectured by R. J. Mathar, Oct 02 2014, verified by Robert Israel, Sep 30 2015
G.f.: (1 + 2*x)/(2*x*sqrt(1-4*x)) - 1/(2*x). - Vladimir Kruchinin, Sep 30 2015.
a(n) = Sum_{k=0..(n+1)/2} (binomial(n-k+1,k)*2^(n-2*k+1)*binomial(n,k)). - Vladimir Kruchinin, Sep 30 2015.
a(n) = 4^n*(2+3*n)*Gamma(n + 1/2)/(sqrt(Pi)*Gamma(n+2)). - Peter Luschny, Dec 14 2015
a(n - 1) = A051924(n) + A000108(n - 1). - F. Chapoton, Mar 05 2022
|
|
MAPLE
|
a := n -> 4^n*(2+3*n)*GAMMA(1/2+n)/(sqrt(Pi)*GAMMA(2+n)):
seq(a(n), n=0..25); # Peter Luschny, Dec 14 2015
|
|
MATHEMATICA
|
Table[CatalanNumber[n] (3n+2), {n, 0, 30}] (* Michael De Vlieger, Sep 30 2015 *)
|
|
PROG
|
(Maxima)
a(n):=sum(binomial(n-k+1, k)*2^(n-2*k+1)*binomial(n, k), k, 0, (n+1)/2); /* Vladimir Kruchinin, Sep 30 2015 */
(PARI) a(n) = (3*n+2)*binomial(2*n, n)/(n+1);
vector(30, n, a(n-1)) \\ Altug Alkan, Sep 30 2015
(MAGMA) [Catalan(n)*(3*n+2): n in [0..30]]; // Vincenzo Librandi, Oct 01 2015
|
|
CROSSREFS
|
Cf. A000108 and A051924.
Half A028283.
Sequence in context: A321470 A149968 A149969 * A149970 A157418 A149971
Adjacent sequences: A051957 A051958 A051959 * A051961 A051962 A051963
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
Barry E. Williams, Jan 05 2000
|
|
STATUS
|
approved
|
|
|
|