login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A051960 a(n) = C(n)*(3n+2) where C(n) = Catalan numbers = A000108. 8
2, 5, 16, 55, 196, 714, 2640, 9867, 37180, 140998, 537472, 2057510, 7904456, 30458900, 117675360, 455657715, 1767883500, 6871173870, 26747767200, 104268528210, 406975466040, 1590307356300, 6220814327520, 24357232569150, 95452906901976, 374369872911804 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

If Y is a fixed 2-subset of a 2n-set X then a(n-1) is the number of n-subsets of X intersecting Y. - Milan Janjic, Oct 21 2007

a(n-1) is the number of vertices in the n-dimensional halohedron (or equivalently, n-cycle cubeahedron). - Vincent Pilaud, May 12 2020

REFERENCES

A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.

LINKS

Robert Israel, Table of n, a(n) for n = 0..1600

Moa Apagodu and Doron Zeilberger, Using the "Freshman's Dream" to Prove Combinatorial Congruences, arXiv:1606.03351 [math.CO], 2016. Also Amer. Math. Monthly. 124 (2017), 597-608.

Satyan L. Devadoss, Timothy Heath, Cid Vipismakul, Deformations of bordered Riemann surfaces and associahedral polytopes, arXiv:1002.1676 [math.AG], 2010.

S. L. Devadoss, T. Heath, and W. Vipismakul, Deformations of bordered surfaces and convex polytopes, Notices Amer. Math. Soc. 58 (2011), no. 4, 530-541.

S. B. Ekhad, M. Yang, Proofs of Linear Recurrences of Coefficients of Certain Algebraic Formal Power Series Conjectured in the On-Line Encyclopedia Of Integer Sequences, (2017)

Milan Janjic, Two Enumerative Functions

Milan Janjić, On Restricted Ternary Words and Insets, arXiv:1905.04465 [math.CO], 2019.

FORMULA

(n+1)*a(n) - 2*(n+2)*a(n-1) - 4*(2*n-3)*a(n-2) = 0. - conjectured by R. J. Mathar, Oct 02 2014, verified by Robert Israel, Sep 30 2015

G.f.: (1 + 2*x)/(2*x*sqrt(1-4*x)) - 1/(2*x). - Vladimir Kruchinin, Sep 30 2015.

a(n) = Sum_{k=0..(n+1)/2} (binomial(n-k+1,k)*2^(n-2*k+1)*binomial(n,k)). - Vladimir Kruchinin, Sep 30 2015.

a(n) = 4^n*(2+3*n)*Gamma(n + 1/2)/(sqrt(Pi)*Gamma(n+2)). - Peter Luschny, Dec 14 2015

MAPLE

a := n -> 4^n*(2+3*n)*GAMMA(1/2+n)/(sqrt(Pi)*GAMMA(2+n)):

seq(a(n), n=0..25); # Peter Luschny, Dec 14 2015

MATHEMATICA

Table[CatalanNumber[n] (3n+2), {n, 0, 30}] (* Michael De Vlieger, Sep 30 2015 *)

PROG

(Maxima)

a(n):=sum(binomial(n-k+1, k)*2^(n-2*k+1)*binomial(n, k), k, 0, (n+1)/2); /* Vladimir Kruchinin, Sep 30 2015 */

(PARI) a(n) = (3*n+2)*binomial(2*n, n)/(n+1);

vector(30, n, a(n-1)) \\ Altug Alkan, Sep 30 2015

(MAGMA) [Catalan(n)*(3*n+2): n in [0..30]]; // Vincenzo Librandi, Oct 01 2015

CROSSREFS

Cf. A000108.

Half A028283.

Sequence in context: A321470 A149968 A149969 * A149970 A157418 A149971

Adjacent sequences:  A051957 A051958 A051959 * A051961 A051962 A051963

KEYWORD

easy,nonn

AUTHOR

Barry E. Williams, Jan 05 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 11 15:53 EDT 2021. Contains 343792 sequences. (Running on oeis4.)