The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A051924 a(n) = binomial(2*n,n) - binomial(2*n-2,n-1); or (3n-2)*C(n-1), where C = Catalan numbers (A000108). 34
 1, 4, 14, 50, 182, 672, 2508, 9438, 35750, 136136, 520676, 1998724, 7696444, 29716000, 115000920, 445962870, 1732525830, 6741529080, 26270128500, 102501265020, 400411345620, 1565841089280, 6129331763880, 24014172955500 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Number of partitions with Ferrers plots that fit inside an n X n box, but not in an n-1 X n-1 box. - Wouter Meeussen, Dec 10 2001 From Benoit Cloitre, Jan 29 2002: (Start) Let m(1,j)=j, m(i,1)=i and m(i,j) = m(i-1,j) + m(i,j-1); then a(n) = m(n,n):   1  2  3  4 ...   2  4  7 11 ...   3  7 14 25 ...   4 11 25 50 ... (End) This sequence also gives the number of clusters and non-crossing partitions of type D_n. - F. Chapoton, Jan 31 2005 If Y is a 2-subset of a 2n-set X then a(n) is the number of (n+1)-subsets of X intersecting Y. - Milan Janjic, Nov 18 2007 Prefaced with a 1: (1, 1, 4, 14, 50, ...) and convolved with the Catalan sequence = A097613: (1, 2, 7, 25, 91, ...). - Gary W. Adamson, May 15 2009 Total number of up steps before the second return in all Dyck n-paths. - David Scambler, Aug 21 2012 Conjecture: a(n) mod n^2 = n+2 iff n is an odd prime. - Gary Detlefs, Feb 19 2013 First differences of A000984 and A030662. - J. M. Bergot, Jun 22 2013 From R. J. Mathar, Jun 30 2013: (Start) Equivalent to the Meeussen comment and the Bergot comment: The array view of A007318 is   1,   1,   1,   1,   1,   1,   1,   2,   3,   4,   5,   6,   1,   3,   6,  10,  15,  21,   1,   4,  10,  20,  35,  56,   1,   5,  15,  35,  70, 126,   1,   6,  21,  56, 126, 252, and a(n) are the hook sums Sum_{k=0..n} A(n,k) + Sum_{r=0..n-1} A(r,n). (End) From Gus Wiseman, Apr 12 2019: (Start) Equivalent to Wouter Meeussen's comment, a(n) is the number of integer partitions (of any positive integer) such that the maximum of the length and the largest part is k. For example, the a(1) = 1 through a(3) = 14 partitions are:   (1)  (2)   (3)        (11)  (31)        (21)  (32)        (22)  (33)              (111)              (211)              (221)              (222)              (311)              (321)              (322)              (331)              (332)              (333) (End) LINKS Reinhard Zumkeller, Table of n, a(n) for n = 1..1000 F. Chapoton, Clusters. Sergey Fomin and Andrei Zelevinsky, Y-systems and generalized associahedra, Ann. of Math. (2) 158 (2003), no. 3, 977-1018. Joël Gay, Vincent Pilaud, The weak order on Weyl posets, arXiv:1804.06572 [math.CO], 2018. Milan Janjic, Two Enumerative Functions Sanjay Moudgalya, Abhinav Prem, Rahul Nandkishore, Nicolas Regnault, B. Andrei Bernevig, Thermalization and its absence within Krylov subspaces of a constrained Hamiltonian, arXiv:1910.14048 [cond-mat.str-el], 2019. Hugh Thomas, Tamari Lattices and Non-Crossing Partitions in Types B and D, arXiv:math/0311334 [math.CO], 2003-2005. FORMULA G.f.: (1-x) / sqrt(1-4*x) - 1. - Paul D. Hanna, Nov 08 2014 G.f.: Sum_{n>=1} x^n/(1-x)^(2*n) * Sum_{k=0..n} C(n,k)^2 * x^k. - Paul D. Hanna, Nov 08 2014 a(n+1) = binomial(2*n, n)+2*sum(i=0, n-1, binomial(n+i, i) (V's in Pascal's Triangle). - Jon Perry Apr 13 2004 a(n) = n*C(n-1) - (n-1)*C(n-2), where C(n) = A000108(n) = Catalan(n). For example, a(5) = 50 = 5*C(4) - 4*C(3) - 5*14 - 3*5 = 70 - 20. Triangle A128064 as an infinite lower triangular matrix * A000108 = A051924 prefaced with a 1: (1, 1, 4, 14, 50, 182, ...). - Gary W. Adamson, May 15 2009 Sum of 3 central terms of Pascal's triangle: 2*C(2+2*n, n)+C(2+2*n, 1+n). - Zerinvary Lajos, Dec 20 2005 a(n+1) = A051597(2n,n). - Philippe Deléham, Nov 26 2006 The sequence 1,1,4,... has a(n)=C(2n,n)-C(2(n-1),n-1)=0^n+sum{k=0..n, C(n-1,k-1)*A002426(k)}, and g.f. given by (1-x)/(1-2x-2x^2/(1-2x-x^2/(1-2x-x^2/(1-2x-x^2/(1-.... (continued fraction). - Paul Barry, Oct 17 2009 a(n) = (3*n-2)*(2*n-2)!/(n*(n-1)!^2) = A001700(n) + A001791(n-1). - David Scambler, Aug 21 2012 D-finite with recurrence: a(n) = 2*(3*n-2)*(2*n-3)*a(n-1)/(n*(3*n-5)). - Alois P. Heinz, Apr 25 2014 a(n) = 2^(-2+2*n)*Gamma(-1/2+n)*(3*n-2)/(sqrt(Pi)*Gamma(1+n)). - Peter Luschny, Dec 14 2015 a(n) ~ (3/4)*4^n*(1-(7/24)/n-(7/128)/n^2-(85/3072)/n^3-(581/32768)/n^4-(2611/262144)/n^5)/sqrt(n*Pi). - Peter Luschny, Dec 16 2015 E.g.f.: ((1 - x)*BesselI(0,2*x) + x*BesselI(1,2*x))*exp(2*x) - 1. - Ilya Gutkovskiy, Dec 20 2016 a(n) = 2 * A097613(n) for n > 1. - Bruce J. Nicholson, Jan 06 2019 EXAMPLE Sums of {1}, {2, 1, 1}, {2, 2, 3, 3, 2, 1, 1}, {2, 2, 4, 5, 7, 6, 7, 5, 5, 3, 2, 1, 1}, ... MAPLE C:=proc(n) options operator, arrow: binomial(2*n, n)/(n+1) end proc: seq(n*C(n-1)-(n-1)*C(n-2), n=2..25); # Emeric Deutsch, Jan 08 2008 Z:=(1-z-sqrt(1-4*z))/sqrt(1-4*z): Zser:=series(Z, z=0, 32): seq(coeff(Zser, z, n), n=1..24); # Zerinvary Lajos, Jan 01 2007 a := n -> 2^(-2+2*n)*GAMMA(-1/2+n)*(3*n-2)/(sqrt(Pi)*GAMMA(1+n)): seq(simplify(a(n)), n=1..24); # Peter Luschny, Dec 14 2015 MATHEMATICA Table[Binomial[2n, n]-Binomial[2n-2, n-1], {n, 30}] (* Harvey P. Dale, Jan 15 2012 *) PROG (Haskell) a051924 n = a051924_list !! (n-1) a051924_list = zipWith (-) (tail a000984_list) a000984_list -- Reinhard Zumkeller, May 25 2013 (PARI) a(n)=binomial(2*n, n)-binomial(2*n-2, n-1) \\ Charles R Greathouse IV, Jun 25 2013 (PARI) {a(n)=polcoeff((1-x) / sqrt(1-4*x +x*O(x^n)) - 1, n)} for(n=1, 30, print1(a(n), ", ")) \\ Paul D. Hanna, Nov 08 2014 (PARI) {a(n)=polcoeff( sum(m=1, n, x^m * sum(k=0, m, binomial(m, k)^2 * x^k) / (1-x +x*O(x^n))^(2*m)), n)} for(n=1, 30, print1(a(n), ", ")) \\ Paul D. Hanna, Nov 08 2014 (Sage) a = lambda n: 2^(-2+2*n)*gamma(n-1/2)*(3*n-2)/(sqrt(pi)*gamma(1+n)) [a(n) for n in (1..120)] # Peter Luschny, Dec 14 2015 (MAGMA) [Binomial(2*n, n)-Binomial(2*n-2, n-1): n in [1..28]]; // Vincenzo Librandi, Dec 21 2016 CROSSREFS Left-central elements of the (1, 2)-Pascal triangle A029635. Column sums of A096771. Cf. A000108, A024482 (diagonal from 2), A076540 (diagonal from 3), A000124 (row from 2), A004006 (row from 3), A006522 (row from 4). Cf. A128064; first differences of A000984. Cf. A097613. Cf. A115720, A252464, A257990, A263297, A325189, A325192, A325193. Sequence in context: A055990 A211308 A087945 * A272687 A076024 A062807 Adjacent sequences:  A051921 A051922 A051923 * A051925 A051926 A051927 KEYWORD easy,nice,nonn AUTHOR Barry E. Williams, Dec 19 1999 EXTENSIONS Edited by N. J. A. Sloane, May 03 2008, at the suggestion of R. J. Mathar STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 20 13:10 EST 2020. Contains 332076 sequences. (Running on oeis4.)