login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A241187
Triangle read by rows: T(n,k) (0 <= k <= n) = denominator of Integral_{x=0..n} binomial(x,k).
1
1, 1, 2, 1, 1, 3, 1, 2, 4, 8, 1, 1, 3, 3, 45, 1, 2, 12, 8, 144, 288, 1, 1, 1, 1, 10, 10, 140, 1, 2, 12, 24, 720, 160, 8640, 17280, 1, 1, 3, 1, 45, 45, 945, 189, 14175, 1, 2, 4, 8, 80, 32, 2240, 4480, 6400, 89600, 1, 1, 3, 3, 18, 2, 756, 189, 4536, 4536, 299376
OFFSET
0,3
COMMENTS
Suggested by the integral formula for the Cotesian numbers A100640/A100641.
EXAMPLE
Triangle of fractions Integral_{x=0..n} binomial(x,k) begins:
[0],
[1, 1/2],
[2, 2, 1/3],
[3, 9/2, 9/4, 3/8],
[4, 8, 20/3, 8/3, 14/45],
[5, 25/2, 175/12, 75/8, 425/144, 95/288],
[6, 18, 27, 24, 123/10, 33/10, 41/140],
[7, 49/2, 539/12, 1225/24, 26117/720, 2499/160, 30919/8640, 5257/17280],
[8, 32, 208/3, 96, 3928/45, 2336/45, 18128/945, 736/189, 3956/14175],
...
MAPLE
T:=proc(n, k) integrate( expand(binomial(x, k)), x=0..n); end;
t0:=[seq( [seq(T(n, k), k=0..n)], n=0..10)];
CROSSREFS
KEYWORD
nonn,tabl,frac
AUTHOR
N. J. A. Sloane, Apr 24 2014
STATUS
approved