Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 Sep 08 2022 08:46:01
%S 0,1,1,1,1,2,1,-1,-3,-5,-4,-11,-13,-7,23,86,87,199,415,799,-152,-4159,
%T -8063,-17047,-38727,-155366,-142471,445015,2309453,7627979,13609844,
%U 81138437,187790979,142104721,-1743980081,-12357952274,-25547499185,-134098256401
%N Somos-5 sequence variant: a(n) = (a(n-1) * a(n-4) - a(n-2) * a(n-3)) / a(n-5), a(0) = 0, a(1) = a(2) = a(3) = a(4) = 1, a(5) = 2.
%C This is a divisibility sequence; that is, if n divides m, then a(n) divides a(m).
%H Alois P. Heinz, <a href="/A210098/b210098.txt">Table of n, a(n) for n = 0..200</a>
%H K. S. Brown, <a href="http://www.mathpages.com/home/kmath162/kmath162.htm">A Quasi-Periodic Sequence</a>
%H <a href="/index/Di#divseq">Index to divisibility sequences</a>
%F a(n) = -a(-n), a(n) * a(n-5) = a(n-1) * a(n-4) - a(n-2) * a(n-3) for all n in Z.
%F a(n+4) * a(n-4) = a(n+2) * a(n-2) - a(n) * a(n), a(n+2) * a(n-2) = (2 - (-1)^n) * a(n+1) * a(n-1) - a(n) * a(n) for all n in Z.
%e G.f. = x + x^2 + x^3 + x^4 + 2*x^5 + x^6 - x^7 - 3*x^8 - 5*x^9 - 4*x^10 + ...
%p a:= proc(n) a(n):= `if`(n<6, [0, 1$4, 2][n+1],
%p (a(n-1)*a(n-4) -a(n-2)*a(n-3)) / a(n-5))
%p end:
%p seq (a(n), n=0..40); # _Alois P. Heinz_, Oct 20 2012
%t Join[{0},RecurrenceTable[{a[1]==a[2]==a[3]==a[4]==1,a[5]==2,a[n] == (a[n-1]a[n-4]-a[n-2]a[n-3])/a[n-5]},a,{n,40}]] (* _Harvey P. Dale_, Oct 20 2012 *)
%o (PARI) {a(n) = my(v, m); if( n==0, 0, m = abs(n); sign(n) * if( m<6, 1 + (m>4), v = vector( m, i, 1); v[5] = 2; for( i=6, m, v[i] = (v[i-1] * v[i-4] - v[i-2] * v[i-3]) / v[i-5]); v[m]))};
%o (Magma) I:=[1,1,1,1,2]; [n le 5 select I[n] else (Self(n-1)*Self(n-4) - Self(n-2)*Self(n-3))/Self(n-5): n in [1..50]]; // _G. C. Greubel_, Aug 11 2018
%Y Cf. A006721.
%K sign
%O 0,6
%A _Michael Somos_, Mar 17 2012