OFFSET
1,3
COMMENTS
Limit a(n+1)/a(n) = -1.518310626574179412829374208878425316378446155444786132846991305715550168878405863954219813056513...
LINKS
Robert Israel, Table of n, a(n) for n = 1..4962
FORMULA
a(n) = (n+1)*sum(m=1..n+1, T(n+1,m)/m*(-1)^(m+1)), where T(n,m):=(1+(-1)^(n-m))/2*sum(k=1..(n-m)/2, binomial(m,k)*T((n-m)/2,k)), T(n,n)=1. - Vladimir Kruchinin, Mar 18 2015
EXAMPLE
G.f.: L(x) = x - x^2/2 + 4*x^3/3 - 5*x^4/4 + 6*x^5/5 - 10*x^6/6 +-...
where L(x) = log(1 + x + x^3 + x^7 + x^15 + x^31 +...+ x^(2^n-1) +...).
MAPLE
N:= 100: # to get a(1) to a(N)
L:= ln(add(x^(2^j-1), j= 0 .. ceil(log[2](N)))):
S:= series(L, x, N+1):
seq(coeff(S, x, n)*n, n=1..N); # Robert Israel, Mar 18 2015
PROG
(PARI) {a(n)=local(L=log(sum(m=0, #binary(n), x^(2^m-1))+x*O(x^n))); n*polcoeff(L, n)}
(Maxima)
T(n, m):=if n=m then 1 else (1+(-1)^(n-m))/2*sum(binomial(m, k)*T((n-m)/2, k), k, 1, (n-m)/2); makelist(n*sum(T(n, m)/m*(-1)^(m+1), m, 1, n), n, 1, 20); /* Vladimir Kruchinin, Mar 18 2015 */
CROSSREFS
KEYWORD
sign
AUTHOR
Paul D. Hanna, Jul 02 2009
EXTENSIONS
Offset corrected by Robert Israel, Mar 18 2015
STATUS
approved