login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A162415
L.g.f.: Sum_{n>=1} a(n)*x^n/n = log( Sum_{n>=0} x^(2^n-1) ).
2
1, -1, 4, -5, 6, -10, 22, -29, 40, -66, 100, -146, 222, -344, 534, -797, 1208, -1846, 2794, -4230, 6430, -9780, 14836, -22514, 34206, -51936, 78826, -119684, 181744, -275940, 418966, -636125, 965848, -1466438, 2226482, -3380510, 5132678
OFFSET
1,3
COMMENTS
Limit a(n+1)/a(n) = -1.518310626574179412829374208878425316378446155444786132846991305715550168878405863954219813056513...
LINKS
FORMULA
a(n) = (n+1)*sum(m=1..n+1, T(n+1,m)/m*(-1)^(m+1)), where T(n,m):=(1+(-1)^(n-m))/2*sum(k=1..(n-m)/2, binomial(m,k)*T((n-m)/2,k)), T(n,n)=1. - Vladimir Kruchinin, Mar 18 2015
EXAMPLE
G.f.: L(x) = x - x^2/2 + 4*x^3/3 - 5*x^4/4 + 6*x^5/5 - 10*x^6/6 +-...
where L(x) = log(1 + x + x^3 + x^7 + x^15 + x^31 +...+ x^(2^n-1) +...).
MAPLE
N:= 100: # to get a(1) to a(N)
L:= ln(add(x^(2^j-1), j= 0 .. ceil(log[2](N)))):
S:= series(L, x, N+1):
seq(coeff(S, x, n)*n, n=1..N); # Robert Israel, Mar 18 2015
PROG
(PARI) {a(n)=local(L=log(sum(m=0, #binary(n), x^(2^m-1))+x*O(x^n))); n*polcoeff(L, n)}
(Maxima)
T(n, m):=if n=m then 1 else (1+(-1)^(n-m))/2*sum(binomial(m, k)*T((n-m)/2, k), k, 1, (n-m)/2); makelist(n*sum(T(n, m)/m*(-1)^(m+1), m, 1, n), n, 1, 20); /* Vladimir Kruchinin, Mar 18 2015 */
CROSSREFS
Cf. A162416.
Sequence in context: A101590 A057916 A249853 * A007606 A284513 A047311
KEYWORD
sign
AUTHOR
Paul D. Hanna, Jul 02 2009
EXTENSIONS
Offset corrected by Robert Israel, Mar 18 2015
STATUS
approved