OFFSET
1,3
COMMENTS
Numbers n such that (540*10^n - 63)/9 is prime.
Numbers n such that digit 5 followed by n >= 0 occurrences of digit 9 followed by digit 3 is prime.
Numbers corresponding to terms <= 330 are certified primes.
a(23) > 2*10^5. - Robert Price, Aug 07 2015
REFERENCES
Klaus Brockhaus and Walter Oberschelp, Zahlenfolgen mit homogenem Ziffernkern, MNU 59/8 (2006), pp. 462-467.
LINKS
FORMULA
a(n) = A103025(n) - 1.
EXAMPLE
593 is prime, hence 1 is a term.
MATHEMATICA
Select[Range[0, 200000], PrimeQ[(540*10^# - 63)/9] &] (* Robert Price, Aug 07 2015 *)
PROG
(PARI) a=53; for(n=0, 1500, if(isprime(a), print1(n, ", ")); a=10*a+63)
(PARI) for(n=0, 1500, if(isprime((540*10^n-63)/9), print1(n, ", ")))
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Klaus Brockhaus and Walter Oberschelp (oberschelp(AT)informatik.rwth-aachen.de), Dec 09 2004
EXTENSIONS
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 01 2008
a(20)-a(22) from Kamada data by Ray Chandler, Apr 30 2015
STATUS
approved