The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A019704 Decimal expansion of sqrt(Pi)/2. 8
 8, 8, 6, 2, 2, 6, 9, 2, 5, 4, 5, 2, 7, 5, 8, 0, 1, 3, 6, 4, 9, 0, 8, 3, 7, 4, 1, 6, 7, 0, 5, 7, 2, 5, 9, 1, 3, 9, 8, 7, 7, 4, 7, 2, 8, 0, 6, 1, 1, 9, 3, 5, 6, 4, 1, 0, 6, 9, 0, 3, 8, 9, 4, 9, 2, 6, 4, 5, 5, 6, 4, 2, 2, 9, 5, 5, 1, 6, 0, 9, 0, 6, 8, 7, 4, 7, 5, 3, 2, 8, 3, 6, 9, 2, 7, 2, 3, 3, 2 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 REFERENCES C. C. Clawson, The Beauty and Magic of Numbers. New York: Plenum Press (1996): 210. LINKS Ivan Panchenko, Table of n, a(n) for n = 0..1000 I. S. Gradsteyn, I. M. Ryzhik, Table of integrals, series and products, (1980), page 420 (formulas 3.757.1, 3.757.2). Michael Penn, An interesting approach to the Gaussian integral, YouTube video, 2021. FORMULA Equals (1/2)! = Gamma(3/2). - Benoit Cloitre, Apr 24 2003 Equals Integral_{x=0..infinity} exp(-x^2) dx = Integral_{x=0..infinity} exp(-(x - 1/x)^2) dx = Integral_{x=0..1} sqrt(log(1/x)) dx. - Jean-François Alcover, Mar 28 2013 Equals sqrt(A003881). - Michel Marcus, Aug 31 2014 From A.H.M. Smeets, Sep 22 2018: (Start) Equals Integral_{x >= 0} sin(2x)/sqrt(x) dx [Gradshteyn and Ryzhik]. Equals Integral_{x >= 0} cos(2x)/sqrt(x) dx [Gradshteyn and Ryzhik]. (End) Equals Integral_{x=0..oo} sin(x^2)^2/x^2 dx. - Amiram Eldar, Aug 21 2020 EXAMPLE sqrt(Pi)/2 = 0.886226925452758013649... MAPLE evalf(sqrt(Pi)/2, 120); # Muniru A Asiru, Sep 22 2018 MATHEMATICA RealDigits[Sqrt[Pi]/2, 10, 100][[1]] (* Alonso del Arte, Aug 15 2012 *) PROG (PARI) gammah(1) \\ Michel Marcus, Feb 11 2016 (PARI) sqrt(Pi)/2 \\ Michel Marcus, Feb 11 2016 (PARI) intnum(x=0, [oo, -2*I], sin(2*x)/sqrt(x)) \\ Gheorghe Coserea, Sep 23 2018 (PARI) intnum(x=[0, -1/2], [oo, 2*I], cos(2*x)/sqrt(x)) \\ Gheorghe Coserea, Sep 23 2018 (PARI) intnum(x=1, [oo, 1], exp(-(x-1/x)^2)*(1 + 1/x^2)) \\ Gheorghe Coserea, Sep 24 2018 (MAGMA) pi:=Sqrt(Pi(RealField(110)))/ 2; Reverse(Intseq(Floor(10^110*pi))); // Vincenzo Librandi, Feb 11 2016 CROSSREFS Cf. A003881. Sequence in context: A202497 A195708 A340168 * A140976 A253270 A021057 Adjacent sequences:  A019701 A019702 A019703 * A019705 A019706 A019707 KEYWORD nonn,cons AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 20 06:59 EDT 2021. Contains 343125 sequences. (Running on oeis4.)