OFFSET
1,2
COMMENTS
If the offset is set to 2 then [a(n) <> 1] is the indicator function of the odd primes ([] Iverson bracket). [Peter Luschny, Jul 05 2009]
FORMULA
a(n) = A089026(n+1) for n>1.
Also for n>1, a(n) is a numerator of determinant of (n-1) X (n-1) matrix with M(i,j) = (i+2)/(i+1) if i=j, otherwise 1. E.g., a(2) = Numerator[Det[{{3/2}}]] = Numerator[3/2] = 3. a(3) = Numerator[Det[{{3/2,1},{1,4/3}}]] = Numerator[1/1] = 1. a(4) = Numerator[Det[{{3/2,1,1},{1,4/3,1},{1,1,5/4}}]] = Numerator[5/12] = 5. - Alexander Adamchuk, May 26 2006
a(n) = gcd(n*(n+1)/2, n!+1). [Jaume Oliver Lafont, Jan 23 2009]
EXAMPLE
For n=5, (1+2+3+4+5)/(1*2*3*4*5) = 15/120 = 1/8, so a(5) = 1. For n=6, (1+2+3+4+5+6)/(1*2*3*4*5*6) = 21/720 = 7/240, so a(6) = 7. - Michael B. Porter, Jul 02 2016
MAPLE
a := n -> denom(2*n!/(n+1)); # Peter Luschny, Jul 05 2009
MATHEMATICA
With[{nn=100}, Numerator[Accumulate[Range[nn]]/Rest[FoldList[Times, 1, Range[nn]]]]] (* Harvey P. Dale, Sep 09 2014 *)
PROG
(PARI) for(n=1, 100, print1(gcd(n*(n+1)/2, round(factorial(n))+1), ", ")); \\ Jaume Oliver Lafont, Jan 23 2009
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
Reinhard Zumkeller, Dec 03 2003
STATUS
approved