OFFSET
1,3
COMMENTS
a(n) = p if n = p^k and p odd prime, k >= 1, otherwise 1.
REFERENCES
Tom M. Apostol, Introduction to analytic number theory, Springer-Verlag, 1976.
LINKS
FORMULA
a(n) = 1 + Sum_{k=3..n} (k-1)*A010051(k)*(floor(k^n/n)-floor((k^n -1)/n)). - Anthony Browne, Jun 16 2016
EXAMPLE
a(8) = 1 because 8 = 2^3 is not the power of an odd prime, a(49) = 7 because 49 = 7^2.
MAPLE
a := proc(n) local lcm; lcm := n -> ilcm(seq(i, i = 1..n)); if type(n, even) then 1 else lcm(n)/lcm(n-1) fi end;
MATHEMATICA
a[n_] := If[IntegerQ[Log[2, n]], 1, Exp[MangoldtLambda[n]]]; Table[a[n], {n, 1, 89}] (* Jean-François Alcover, Jan 27 2014 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Peter Luschny, Jan 22 2009, Jan 25 2009
STATUS
approved