login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A155456
Write (1+1/x)*log(1+x) = Sum c(n)*x^n; then a(n) = (n+1)!*c(n).
1
-1, -1, 1, -2, 6, -24, 120, -720, 5040, -40320, 362880, -3628800, 39916800, -479001600, 6227020800, -87178291200, 1307674368000, -20922789888000, 355687428096000, -6402373705728000, 121645100408832000
OFFSET
0,4
COMMENTS
Apart from initial terms and signs, identical to A000142.
a(n-1), n >= 0, is the negative of the alternating row sum of A048994 (Stirling1) with e.g.f. -1/(1+x). - Wolfdieter Lang, May 09 2017
LINKS
P. W. Anderson, D. J. Thouless, E. Abrahams and D. S. Fisher, New method for a scaling theory of localization, Physical Review B, 1980.
FORMULA
G.f.: -1-x+x^2/(G(0)+x) where G(k)= 1 + (k+1)*x/(1 + x*(k+2)/G(k+1)); (continued fraction, 2-step). - Sergei N. Gladkovskii, Aug 14 2012
G.f.: conjecture: T(0)*x^2/(1+2*x) - 1 - x, where T(k) = 1 - x^2*(k+1)*(k+2)/(x^2*(k+1)*(k+2) - (1+2*x*(k+1))*(1+2*x*(k+2))/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Nov 19 2013
MATHEMATICA
p[x] = -(1 + 1/x)*Log[1 + x];
Table[ (n + 1)!*SeriesCoefficient[ Series[p[x], {x, 0, 30}], n], {n, 0, 30}]
CROSSREFS
Cf. A048994.
Sequence in context: A154659 A254523 A289282 * A124355 A133942 A159333
KEYWORD
sign,easy
AUTHOR
Roger L. Bagula, Jan 22 2009
EXTENSIONS
Edited by N. J. A. Sloane, Jun 02 2009
STATUS
approved