login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A254523 Number of permutations of [n] avoiding adjacent step pattern {up}^11. 2
1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916800, 479001599, 6227020775, 87178290682, 1307674357710, 20922789683040, 355687423926240, 6402373618334400, 121645098513933120, 2432901965590252800, 51090941178938707200, 1124000703770606323200 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Vaclav Kotesovec, Table of n, a(n) for n = 0..200

FORMULA

E.g.f.: 1 / Sum_{n>=0} (12*n+1-x)*x^(12*n)/(12*n+1)!.

E.g.f.: 6 / (exp(-x) + cos(x) + 2*cos(x/2)*cosh(sqrt(3)*x/2) - cosh(sqrt(3)*x/2)*sin(x/2) - sin(x) + cosh(x/2)*(2*cos(sqrt(3)*x/2) - sqrt(3)*sin(sqrt(3)*x/2)) - cos(sqrt(3)*x/2)*sinh(x/2) - sqrt(3)*cos(x/2)*sinh(sqrt(3)*x/2)).

a(n)/n! ~ c * (1/r)^n, where r = 1.0000000019270853046730165249753673978954992128247736041276... is the root of the equation Sum_{n>=0} (r^(12*n)/(12*n)! - r^(12*n+1)/(12*n+1)!) = 0, equivalently root of the equation exp(-r) + cos(r) + 2*cos(r/2)*cosh(sqrt(3)*r/2) - cosh(sqrt(3)*r/2)*sin(r/2) - sin(r) + cosh(r/2)*(2*cos(sqrt(3)*r/2) - sqrt(3)*sin(sqrt(3)*r/2)) - cos(sqrt(3)*r/2)*sinh(r/2) - sqrt(3)*cos(r/2)*sinh(sqrt(3)*r/2) = 0, c = 3/(r*sqrt((cosh(sqrt(3)*r/2) * sin(r/2) + sin(r))^2 + 2*sqrt(3)*cosh(r/2) * (cosh(sqrt(3)*r/2) * sin(r/2) + sin(r)) * sin(sqrt(3)*r/2) + 3*cosh(r/2)^2 * sin((sqrt(3)*r)/2)^2)) = 1.0000000210373483515818712802156496756788404534079689145773611990529818919... .

MAPLE

b:= proc(u, o, t) option remember; `if`(u+o=0, 1,

      `if`(t<10, add(b(u+j-1, o-j, t+1), j=1..o), 0)+

      add(b(u-j, o+j-1, 0), j=1..u))

    end:

a:= n-> b(n, 0, 0):

seq(a(n), n=0..30); # after Alois P. Heinz

MATHEMATICA

CoefficientList[Series[6 / (Exp[-x] + Cos[x] + 2*Cos[x/2] * Cosh[Sqrt[3]*x/2] - Cosh[Sqrt[3]*x/2]*Sin[x/2] - Sin[x] + Cosh[x/2] * (2*Cos[Sqrt[3]*x/2] - Sqrt[3]*Sin[Sqrt[3]*x/2]) - Cos[Sqrt[3]*x/2]*Sinh[x/2] - Sqrt[3]*Cos[x/2]*Sinh[Sqrt[3]*x/2]), {x, 0, 25}], x] * Range[0, 25]!

CROSSREFS

Cf. A049774, A117158, A177523, A177533, A177553, A230051, A230231, A230232, A230233.

Column k=2047 of A242784.

Sequence in context: A072167 A230233 A154659 * A289282 A155456 A124355

Adjacent sequences:  A254520 A254521 A254522 * A254524 A254525 A254526

KEYWORD

nonn

AUTHOR

Vaclav Kotesovec, Jan 31 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 21 21:51 EDT 2021. Contains 348155 sequences. (Running on oeis4.)