login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A254526
Fourier expansion of first basis element of space of weight 1 modular forms on Gamma1(12).
1
1, 0, 0, 0, 0, 12, 0, -12, 0, 0, 12, 0, 0, 0, -12, 12, 0, 12, 0, -12, 12, -12, 0, 0, 0, 12, 0, 0, -12, 12, 12, -12, 0, 0, 12, 0, 0, 0, -12, 0, 12, 12, -12, -12, 0, 12, 0, 0, 0, -12, 12, 12, 0, 12, 0, 0, -12, -12, 12, 0, 12, 0, -12, -12, 0, 24, 0, -12, 12, 0
OFFSET
0,6
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of 3 * (phi(q)^2 + phi(q^3)^2) / 2 - (a(q) + a(q^2)) in powers of q where phi() is a Ramanujan theta function and a() is a cubic AGM theta function.
Moebius transform is period 12 sequence [ 0, 0, 0, 0, 12, 0, -12, 0, 0, 0, 0, 0, ...]. - Michael Somos, Jan 31 2015
EXAMPLE
G.f. = 1 + 12*q^5 - 12*q^7 + 12*q^10 - 12*q^14 + 12*q^15 + 12*q^17 - 12*q^19 + ...
MATHEMATICA
a[ n_] := If[ n < 1, Boole[n==0], 12 Sum[ Boole[ Mod[d, 12] == 5] - Boole[ Mod[d, 12] == 7], {d, Divisors @ n}]];
PROG
(PARI) {a(n) = if( n<1, n==0, 12 * sumdiv( n, d, (d%12 == 5) - (d%12 == 7)))};
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( 3 * eta(x^2 + A)^3 * eta(x^3 + A)^2 * eta(x^6 + A) / (eta(x + A)^2 * eta(x^4 + A) * eta(x^12 + A)) - 2 * eta(x^2 + A)^6 * eta(x^3 + A) / (eta(x + A)^3 * eta(x^6 + A)^2), n))};
(Magma) Basis( ModularForms( Gamma1(12), 1), 70)[1];
CROSSREFS
Sequence in context: A370526 A048730 A307163 * A156390 A059680 A307170
KEYWORD
sign
AUTHOR
Michael Somos, Jan 31 2015
STATUS
approved