The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A242784 Number A(n,k) of permutations of [n] avoiding the consecutive step pattern given by the binary expansion of k, where 1=up and 0=down; square array A(n,k), n>=0, k>=0, read by antidiagonals. 57
 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 4, 1, 1, 1, 1, 2, 5, 8, 1, 1, 1, 1, 2, 6, 17, 16, 1, 1, 1, 1, 2, 6, 21, 70, 32, 1, 1, 1, 1, 2, 6, 19, 90, 349, 64, 1, 1, 1, 1, 2, 6, 21, 70, 450, 2017, 128, 1, 1, 1, 1, 2, 6, 23, 90, 331, 2619, 13358, 256, 1, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,13 LINKS Alois P. Heinz, Antidiagonals n = 0..140, flattened EXAMPLE A(4,5) = 19 because there are 4! = 24 permutations of {1,2,3,4} and only 5 of them do not avoid the consecutive step pattern up, down, up given by the binary expansion of 5 = 101_2: (1,3,2,4), (1,4,2,3), (2,3,1,4), (2,4,1,3), (3,4,1,2). Square array A(n,k) begins: 1, 1, 1, 1, 1, 1, 1, 1, 1, ... 1, 1, 1, 1, 1, 1, 1, 1, 1, ... 1, 1, 2, 2, 2, 2, 2, 2, 2, ... 1, 1, 4, 5, 6, 6, 6, 6, 6, ... 1, 1, 8, 17, 21, 19, 21, 23, 24, ... 1, 1, 16, 70, 90, 70, 90, 111, 116, ... 1, 1, 32, 349, 450, 331, 450, 642, 672, ... 1, 1, 64, 2017, 2619, 1863, 2619, 4326, 4536, ... 1, 1, 128, 13358, 17334, 11637, 17334, 33333, 34944, ... MAPLE A:= proc(n, k) option remember; local b, m, r, h; if k<2 then return 1 fi; m:= iquo(k, 2, 'r'); h:= 2^ilog2(k); b:= proc(u, o, t) option remember; `if`(u+o=0, 1, `if`(t=m and r=0, 0, add(b(u-j, o+j-1, irem(2*t, h)), j=1..u))+ `if`(t=m and r=1, 0, add(b(u+j-1, o-j, irem(2*t+1, h)), j=1..o))) end; forget(b); b(n, 0, 0) end: seq(seq(A(n, d-n), n=0..d), d=0..15); MATHEMATICA Clear[A]; A[n_, k_] := A[n, k] = Module[{b, m, r, h}, If[k < 2, Return[1]]; {m, r} = QuotientRemainder[k, 2]; h = 2^Floor[Log[2, k]]; b[u_, o_, t_] := b[u, o, t] = If[u + o == 0, 1, If[t == m && r == 0, 0, Sum[b[u - j, o + j - 1, Mod[2*t, h]], {j, 1, u}]] + If[t == m && r == 1, 0, Sum[b[u + j - 1, o - j, Mod[2*t + 1, h]], {j, 1, o}]]]; b[n, 0, 0]]; Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 15}] // Flatten (* Jean-François Alcover, Sep 22 2014, translated from Maple *) CROSSREFS Columns give: 0, 1: A000012, 2: A011782, 3: A049774, 4, 6: A177479, 5: A177477, 7: A117158, 8, 14: A177518, 9: A177519, 10: A177520, 11, 13: A177521, 12: A177522, 15: A177523, 16, 30: A177524, 17: A177525, 18, 22: A177526, 19, 25: A177527, 20, 26: A177528, 21: A177529, 23, 29: A177530, 24, 28: A177531, 27: A177532, 31: A177533, 32, 62: A177534, 33: A177535, 34, 46: A177536, 35, 49: A177537, 36, 54: A177538, 37, 41: A177539, 38: A177540, 39, 57: A177541, 40, 58: A177542, 42: A177543, 43, 53: A177544, 44, 50: A177545, 45: A177546, 47, 61: A177547, 48, 60: A177548, 51: A177549, 52: A177550, 55, 59: A177551, 56: A177552, 63: A177553, 127: A230051, 255: A230231, 511: A230232, 1023: A230233, 2047: A254523. Main diagonal gives A242785. Cf. A242783, A335308. Sequence in context: A293429 A201075 A131338 * A265313 A106498 A093466 Adjacent sequences: A242781 A242782 A242783 * A242785 A242786 A242787 KEYWORD nonn,tabl AUTHOR Alois P. Heinz, May 22 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 6 19:24 EDT 2023. Contains 363150 sequences. (Running on oeis4.)