login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A177534
Number of permutations of {1,...,n} avoiding adjacent step pattern up, down, down, down, down, down.
2
1, 1, 2, 6, 24, 120, 720, 5034, 40224, 361584, 3611520, 39679200, 475580160, 6175139244, 86348433264, 1293675609960, 20674025187840, 351037594569600, 6311110770685440, 119767524064039062, 2392482308124881520, 50181968955048369480, 1102681392427432825920
OFFSET
0,3
LINKS
FORMULA
a(n) ~ c * d^n * n!, where d = 0.99880260814201465936657157017137377717606254472452619578417647021809..., c = 1.0072348951217738673562195411256011395302888145883911883919110478... . - Vaclav Kotesovec, Jan 17 2015
MAPLE
b:= proc(u, o, t) option remember; `if`(t>6, 0, `if`(u+o+t<7, (u+o)!,
add(b(u-j, o+j-1, `if`(t=1, 1, t+1)), j=1..u)+
add(b(u+j-1, o-j, 2), j=1..o)))
end:
a:= n-> b(n, 0, 1):
seq(a(n), n=0..25); # Alois P. Heinz, Oct 21 2013
MATHEMATICA
b[u_, o_, t_] := b[u, o, t] = If[t > 6, 0, If[u + o + t < 7, (u + o)!,
Sum[b[u - j, o + j - 1, If[t == 1, 1, t + 1]], {j, 1, u}] +
Sum[b[u + j - 1, o - j, 2], {j, 1, o}]]];
a[n_] := b[n, 0, 1];
Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Apr 20 2022, after Alois P. Heinz *)
CROSSREFS
Columns k=32,62 of A242784.
Sequence in context: A324136 A177548 A193935 * A164873 A226438 A248839
KEYWORD
nonn
AUTHOR
R. H. Hardin, May 10 2010
EXTENSIONS
a(18)-a(22) from Alois P. Heinz, Oct 21 2013
STATUS
approved