login
A177533
Number of permutations of 1..n avoiding adjacent step pattern up, up, up, up, up.
11
1, 1, 2, 6, 24, 120, 719, 5027, 40168, 361080, 3606480, 39623760, 474915803, 6166512899, 86227808578, 1291868401830, 20645144452320, 350547210173280, 6302294420371031, 119600213982762899, 2389140113204434900, 50111866901959213980, 1101140993932295832120
OFFSET
0,3
COMMENTS
a(n) is the number of permutations of length n that avoid the consecutive pattern 123456 (or equivalently 654321).
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..450 (terms n = 1..30 from Ray Chandler)
R. E. L. Aldred, M. D. Atkinson, D. J. McCaughan, Avoiding consecutive patterns in permutations Adv. in Appl. Math., 45(3), 449-461, 2010.
Ira M. Gessel, Yan Zhuang, Counting permutations by alternating descents , arXiv:1408.1886 [math.CO], 2014. See displayed equation before Eq. (3), and set m=6. - N. J. A. Sloane, Aug 11 2014
Mingjia Yang, Doron Zeilberger, Increasing Consecutive Patterns in Words, arXiv:1805.06077 [math.CO], 2018.
FORMULA
a(n)/n! ~ 1.005827831279392186... * (1/r)^n, where r = 1.0011988273240623031887... is the root of the equation Sum_{n>=0} (r^(6*n)/(6*n)! - r^(6*n+1)/(6*n+1)!) = 0. - Vaclav Kotesovec, Dec 11 2013
Equivalently, a(n)/n! ~ c * (1/r)^n, where r = 1.00119882732406230318870210972855430833421618931012450844128... is the root of the equation 2 + exp(r/2) * (3 + exp(r)) * cos(sqrt(3)*r/2) = 2 * sqrt(3) * exp(r) * cosh(r/2) * sin(sqrt(3)*r/2), c = sqrt(3) / (2 * r * cosh(r/2) * sin(sqrt(3)*r/2)) = 1.0058278312793921866941324506580803251270892126827302878865925027445... . - Vaclav Kotesovec, Aug 23 2014
E.g.f. (Aldred, Atkinson, McCaughan, 2010): 3/(exp(x/2) * cos(x*sqrt(3)/2+Pi/3) + sqrt(3) * exp(-x/2) * cos(x*sqrt(3)/2+Pi/6) + exp(-x)). - Vaclav Kotesovec, Aug 23 2014
MAPLE
b:= proc(u, o, t) option remember; `if`(u+o=0, 1,
`if`(t<4, add(b(u+j-1, o-j, t+1), j=1..o), 0)+
add(b(u-j, o+j-1, 0), j=1..u))
end:
a:= n-> b(n, 0, 0):
seq(a(n), n=0..30); # Alois P. Heinz, Oct 07 2013
MATHEMATICA
Table[n!*SeriesCoefficient[1/(Sum[x^(6*k)/(6*k)!-x^(6*k+1)/(6*k+1)!, {k, 0, n}]), {x, 0, n}], {n, 1, 20}] (* Vaclav Kotesovec, Dec 11 2013 *)
Rest[CoefficientList[Series[3/(E^(x/2) * Cos[x*Sqrt[3]/2+Pi/3] + Sqrt[3] * E^(-x/2) * Cos[x*Sqrt[3]/2+Pi/6] + E^(-x)), {x, 0, 20}], x] * Range[0, 20]!] (* Vaclav Kotesovec, Aug 23 2014 *)
CROSSREFS
Column k=31 of A242784.
Sequence in context: A047890 A297204 A071088 * A370384 A122417 A321008
KEYWORD
nonn
AUTHOR
R. H. Hardin, May 10 2010
EXTENSIONS
More terms from Ray Chandler, Dec 06 2011
Minor edits by Vaclav Kotesovec, Aug 29 2014
a(0)=1 prepended by Alois P. Heinz, Aug 08 2018
STATUS
approved