login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A177530
Number of permutations of {1,...,n} avoiding adjacent step pattern up, down, up, up, up.
2
1, 1, 2, 6, 24, 120, 706, 4844, 37968, 334656, 3278896, 35330098, 415289184, 5288377848, 72522052240, 1065579141202, 16700472769061, 278099720959114, 4903387952699182, 91258390273541562, 1787828412527348984, 36776310494510881628, 792526608079806841508
OFFSET
0,3
LINKS
FORMULA
a(n) ~ c * d^n * n!, where d = 0.9795419074893388679910049642242424087370823270695747551625158..., c = 1.111068410182136129001099552719852410280865324840041630689... . - Vaclav Kotesovec, Jan 17 2015
MAPLE
b:= proc(u, o, t) option remember; `if`(t>5, 0, `if`(u+o+t<6, (u+o)!,
add(b(u-j, o+j-1, [1, 3, 1, 3, 3][t]), j=1..u)+
add(b(u+j-1, o-j, [2, 2, 4, 5, 6][t]), j=1..o)))
end:
a:= n-> `if`(n=0, 1, add(b(j-1, n-j, 1), j=1..n)):
seq(a(n), n=0..25); # Alois P. Heinz, Oct 21 2013
MATHEMATICA
b[u_, o_, t_] := b[u, o, t] = If[t > 5, 0, If[u + o + t < 6, (u + o)!,
Sum[b[u - j, o + j - 1, {1, 3, 1, 3, 3}[[t]]], {j, 1, u}] +
Sum[b[u + j - 1, o - j, {2, 2, 4, 5, 6}[[t]]], {j, 1, o}]]];
a[n_] := b[n, 0, 1];
Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Apr 19 2022, after Alois P. Heinz *)
CROSSREFS
Columns k=23,29 of A242784.
Sequence in context: A177532 A242573 A223034 * A324134 A324135 A177531
KEYWORD
nonn
AUTHOR
R. H. Hardin, May 10 2010
EXTENSIONS
a(17)-a(22) from Alois P. Heinz, Oct 21 2013
STATUS
approved