login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A177527
Number of permutations of {1,...,n} avoiding adjacent step pattern up, down, down, up, up.
2
1, 1, 2, 6, 24, 120, 694, 4676, 35952, 310464, 2984176, 31536583, 363591384, 4541789148, 61089594448, 880428095803, 13534614549829, 221066397540186, 3823205871530350, 69792946997645295, 1341134146478847104, 27059669661295560098, 571973335506443017436
OFFSET
0,3
LINKS
FORMULA
a(n) ~ c * d^n * n!, where d = 0.96079505301634594056671142147783512755736606..., c = 1.2266835832918378326758739778897107143678546... . - Vaclav Kotesovec, Jan 17 2015
MAPLE
b:= proc(u, o, t) option remember; `if`(t>5, 0, `if`(u+o=0, 1,
add(b(u-j, o+j-1, [1, 3, 4, 1, 3][t]), j=1..u)+
add(b(u+j-1, o-j, [2, 2, 2, 5, 6][t]), j=1..o)))
end:
a:= n-> `if`(n=0, 1, add(b(j-1, n-j, 1), j=1..n)):
seq(a(n), n=0..25); # Alois P. Heinz, Oct 21 2013
MATHEMATICA
b[u_, o_, t_] := b[u, o, t] = If[t > 5, 0, If[u + o + t < 6, (u + o)!,
Sum[b[u - j, o + j - 1, {1, 3, 4, 1, 3}[[t]]], {j, 1, u}] +
Sum[b[u + j - 1, o - j, {2, 2, 2, 5, 6}[[t]]], {j, 1, o}]]];
a[n_] := b[n, 0, 1];
Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Apr 19 2022, after Alois P. Heinz *)
CROSSREFS
Columns k=19,25 of A242784.
Sequence in context: A177526 A214611 A177528 * A068200 A189847 A189284
KEYWORD
nonn
AUTHOR
R. H. Hardin, May 10 2010
EXTENSIONS
a(17)-a(22) from Alois P. Heinz, Oct 21 2013
STATUS
approved