login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A177525
Number of permutations of {1,...,n} avoiding adjacent step pattern up, down, down, down, up.
2
1, 1, 2, 6, 24, 120, 701, 4774, 37128, 324576, 3153961, 33709743, 393044544, 4964774568, 67536381485, 984328864872, 15302821821071, 252773481889854, 4420945845050347, 81616873102658977, 1586065426493434829, 32363206963164145993, 691807691094619216393
OFFSET
0,3
LINKS
FORMULA
a(n) ~ c * d^n * n!, where d = 0.971652908773770631708593889167049741726729704564696579529716779..., c = 1.15870633318154171410681190800508780736090448111042904596... . - Vaclav Kotesovec, Jan 17 2015
MAPLE
b:= proc(u, o, t) option remember; `if`(t>5, 0, `if`(u+o=0, 1,
add(b(u-j, o+j-1, [1, 3, 4, 5, 1][t]), j=1..u)+
add(b(u+j-1, o-j, [2, 2, 2, 2, 6][t]), j=1..o)))
end:
a:= n-> `if`(n=0, 1, add(b(j-1, n-j, 1), j=1..n)):
seq(a(n), n=0..25); # Alois P. Heinz, Oct 21 2013
MATHEMATICA
b[u_, o_, t_] := b[u, o, t] = If[t > 5, 0, If[u + o + t < 6, (u + o)!,
Sum[b[u - j, o + j - 1, {1, 3, 4, 5, 1}[[t]]], {j, 1, u}] +
Sum[b[u + j - 1, o - j, {2, 2, 2, 2, 6}[[t]]], {j, 1, o}]]];
a[n_] := b[n, 0, 1];
Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Apr 19 2022, after Alois P. Heinz *)
CROSSREFS
Column k=17 of A242784.
Sequence in context: A189847 A189284 A274970 * A177532 A242573 A223034
KEYWORD
nonn
AUTHOR
R. H. Hardin, May 10 2010
EXTENSIONS
a(17)-a(22) from Alois P. Heinz, Oct 21 2013
STATUS
approved