login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A177523 Number of permutations of 1..n avoiding adjacent step pattern up, up, up, up. 36
1, 1, 2, 6, 24, 119, 709, 4928, 39144, 349776, 3472811, 37928331, 451891992, 5832672456, 81074690424, 1207441809209, 19181203110129, 323753459184738, 5785975294622694, 109149016813544376, 2167402030585724571, 45190632809497874161, 987099099863360190632 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
a(n) is the number of permutations of length n that avoid the consecutive pattern 12345 (or equivalently 54321).
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..400 (terms n = 1..40 from Ray Chandler)
Ira M. Gessel, Yan Zhuang, Counting permutations by alternating descents , 2014. See displayed equation before Eq. (3), and set m=5. - N. J. A. Sloane, Aug 11 2014
Kaarel Hänni, Asymptotics of descent functions, arXiv:2011.14360 [math.CO], Nov 29 2020, p. 14.
Mingjia Yang, Doron Zeilberger, Increasing Consecutive Patterns in Words, arXiv:1805.06077 [math.CO], 2018.
Mingjia Yang, An experimental walk in patterns, partitions, and words, Ph. D. Dissertation, Rutgers University (2020).
FORMULA
E.g.f.: 1/( Sum_{n>=0} x^(5*n)/(5*n)! - x^(5*n+1)/(5*n+1)! ).
a(n)/n! ~ c * (1/r)^n, where r = 1.007187547786015395418998654... is the root of the equation Sum_{n>=0} (r^(5*n)/(5*n)! - r^(5*n+1)/(5*n+1)!) = 0, c = 1.02806793756750152.... - Vaclav Kotesovec, Dec 11 2013
Equivalently, r = 1.00718754778601539541899865400272701484... is the root of the equation (5+sqrt(5)) * cos(sqrt((5-sqrt(5))/2)*r/2) + (5-sqrt(5)) * exp(sqrt(5)*r/2) * cos(sqrt((5+sqrt(5))/2)*r/2) - sqrt(2*(5-sqrt(5))) * sin(sqrt((5-sqrt(5))/2)*r/2) - sqrt(2*(5+sqrt(5))) * exp(sqrt(5)*r/2) * sin(sqrt((5+sqrt(5))/2)*r/2) = 0. - Vaclav Kotesovec, Aug 29 2014
E.g.f.: 10*exp((1+sqrt(5))*x/4) / ((5+sqrt(5)) * cos(sqrt((5-sqrt(5))/2)*x/2) + (5-sqrt(5)) * exp(sqrt(5)*x/2) * cos(sqrt((5+sqrt(5))/2)*x/2) - sqrt(2*(5-sqrt(5))) * sin(sqrt((5-sqrt(5))/2)*x/2) - sqrt(2*(5+sqrt(5))) * exp(sqrt(5)*x/2) * sin(sqrt((5+sqrt(5))/2)*x/2)). - Vaclav Kotesovec, Aug 29 2014
In closed form, c = 5*exp((1+sqrt(5))*r/4) / (r*((5 + sqrt(5)) * cos(sqrt((5 - sqrt(5))/2)*r/2) + (5 - sqrt(5)) * exp(sqrt(5)*r/2) * cos(sqrt((5 + sqrt(5))/2)*r/2))) = 1.0280679375675015201596831656779442465978511664638... . Vaclav Kotesovec, Feb 01 2015
EXAMPLE
E.g.f.: A(x) = 1 + x + 2*x^2/2! + 6*x^3/3! + 24*x^4/4! + 119*x^5/5! + 709*x^6/6! +...
where A(x) = 1/(1 - x + x^5/5! - x^6/6! + x^10/10! - x^11/11! + x^15/15! - x^16/16! + x^20/20! +...).
MATHEMATICA
Table[n!*SeriesCoefficient[1/(Sum[x^(5*k)/(5*k)!-x^(5*k+1)/(5*k+1)!, {k, 0, n}]), {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Dec 11 2013 *)
FullSimplify[CoefficientList[Series[10*E^((1+Sqrt[5])*x/4) / ((5+Sqrt[5]) * Cos[Sqrt[(5-Sqrt[5])/2]*x/2] + (5-Sqrt[5]) * E^(Sqrt[5]*x/2) * Cos[Sqrt[(5+Sqrt[5])/2]*x/2] - Sqrt[2*(5-Sqrt[5])] * Sin[Sqrt[(5-Sqrt[5])/2]*x/2] - Sqrt[2*(5+Sqrt[5])] * E^(Sqrt[5]*x/2) * Sin[Sqrt[(5+Sqrt[5])/2]*x/2]), {x, 0, 20}], x]*Range[0, 20]!] (* Vaclav Kotesovec, Aug 29 2014 *)
PROG
(PARI) {a(n)=n!*polcoeff(1/sum(m=0, n\5+1, x^(5*m)/(5*m)!-x^(5*m+1)/(5*m+1)!+x^2*O(x^n)), n)}
CROSSREFS
Column k=15 of A242784.
Sequence in context: A202233 A202235 A202236 * A005395 A370383 A357920
KEYWORD
nonn
AUTHOR
R. H. Hardin, May 10 2010
EXTENSIONS
More terms from Ray Chandler, Dec 06 2011
a(0)=1 prepended by Alois P. Heinz, Jan 13 2015
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 18 20:26 EDT 2024. Contains 371781 sequences. (Running on oeis4.)