login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A177521
Number of permutations of 1..n avoiding adjacent step pattern up, down, up, up.
2
1, 1, 2, 6, 24, 111, 612, 3906, 28701, 236527, 2167862, 21824925, 239861934, 2854894485, 36602472117, 502718236303, 7365503262033, 114653301213668, 1889769527067410, 32877891905367530, 602116339324675145, 11578253045158664158, 233244225298760907868
OFFSET
0,3
LINKS
FORMULA
a(n) ~ c * d^n * n!, where d = 0.91568163084580807076940792182223499091165..., c = 1.44100339681864767911275854344010332196608... . - Vaclav Kotesovec, Aug 29 2014
MAPLE
b:= proc(u, o, t) option remember; `if`(u+o=0, 1, `if`(t<3,
add(b(u+j-1, o-j, `if`(t=2, 3, 1)), j=1..o), 0)+
add(b(u-j, o+j-1, `if`(irem(t, 2)=0, 0, 2)), j=1..u))
end:
a:= n-> b(n, 0, 0):
seq(a(n), n=0..30); # Alois P. Heinz, Oct 07 2013
MATHEMATICA
b[u_, o_, t_] := b[u, o, t] = If[u + o == 0, 1, If[t < 3,
Sum[b[u + j - 1, o - j, If[t == 2, 3, 1]], {j, 1, o}] , 0] +
Sum[b[u - j, o + j - 1, If[EvenQ[t], 0, 2]], {j, 1, u}]];
a[n_] := b[n, 0, 0];
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Apr 20 2022, after Alois P. Heinz *)
CROSSREFS
Columns k=11,13 of A242784.
Sequence in context: A342284 A174195 A274378 * A152322 A308726 A168490
KEYWORD
nonn
AUTHOR
R. H. Hardin, May 10 2010
EXTENSIONS
a(17)-a(22) from Alois P. Heinz, Oct 07 2013
a(0)=1 from Alois P. Heinz, Apr 20 2022
STATUS
approved