The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A174195 Number of permutations of 1..n that almost avoid 231. 2
 1, 1, 2, 6, 24, 111, 531, 2519, 11726, 53547, 240448, 1064608, 4658952, 20192022, 86807865, 370665585, 1573606410, 6647552115, 27962334180, 117185243340, 489508952160, 2038937744610, 8471179017990, 35115582053214, 145269385076124, 599866065025406, 2472955722033776, 10179494703130704, 41844811399520752, 171796056971896588 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 R. Brignall et al., Almost avoiding permutations, Discrete Math., 309 (2009), 6626-6631. FORMULA G.f.: (1-5*x-6*x^2 + 45*x^3-24*x^4-(1 + x-4*x^2 + x^3)*(1-4*x)^(3/2))/(-2*x^2*(1-4*x)^(3/2)). a(n) ~ 2^(2*n-2)*sqrt(n)/sqrt(Pi). - Vaclav Kotesovec, Aug 23 2014 Conjecture: 2*(n+2)*(2013*n^2-10435*n+41550)*a(n) +(4026*n^3 -128025*n^2 +34955*n+59010)*a(n-1) -2 *(2*n-5)*(20130*n^2 -110855*n +93819) *a(n-2)=0. - R. J. Mathar, Jun 14 2016 MATHEMATICA CoefficientList[Series[(1 - 5*x - 6*x^2 + 45*x^3 - 24*x^4 - (1 + x - 4*x^2 + x^3)*(1 - 4*x)^(3/2))/(-2*x^2*(1 - 4*x)^(3/2)), {x, 0, 50}], x] (* G. C. Greubel, Mar 22 2017 *) PROG (PARI) x='x+O('x^50); Vec((1 - 5*x - 6*x^2 + 45*x^3 - 24*x^4 - (1 + x - 4*x^2 + x^3)*(1 - 4*x)^(3/2))/(-2*x^2*(1 - 4*x)^(3/2))) \\ G. C. Greubel, Mar 22 2017 CROSSREFS Cf. A174193. Sequence in context: A138020 A046646 A342284 * A274378 A177521 A152322 Adjacent sequences: A174192 A174193 A174194 * A174196 A174197 A174198 KEYWORD nonn AUTHOR N. J. A. Sloane, Nov 26 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 12 22:48 EDT 2024. Contains 371639 sequences. (Running on oeis4.)