The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A174197 Sequence that arises in connection with the number of primes between consecutive squares. 0
 4, 6, 24, 30, 720, 168, 720, 2520, 151200, 55440, 665280, 1310400, 47520, 454053600, 2471040, 3598560, 4410806400, 1769644800, 801964800, 1150269120, 2283240960 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Let f(n) = Sum_{p <= n+1} (floor((n+1)^2/p) - floor(n^2/p))log(p) - Sum_{p < q <= n+1} (floor((n+1)^2/(p*q)) - floor(n^2/(p*q)))log(p*q) + Sum_{p < q < r <= n+1} (floor((n+1)^2/(p*q*r)) - floor(n^2/(p*q*r)))*log(p*q*r) - ... The values of the sequence for positive integer n are e^f(n). LINKS Table of n, a(n) for n=1..21. EXAMPLE f(1) = Sum_{p<=2} (floor((n+1)^2/p) - floor(n^2/p))*log(p) = ((4/2) - (1/2))*log(2) = 2*log(2) = log(4). f(2) = Sum_{p<=3} (floor(9/p) - floor(4/p))*log(p) - Sum_{p < q <= 3} (9/(p*q) - 4/(p*q))*log(p*q) = (9/2 - 4/2)*log(2) + (9/3 - 4/3)*log3 - (9/6 - 4/6)*log(6) = 2*log(2) + 2*log(3) - log(6) = log(6). So the first two terms are 4 and 6. MATHEMATICA (* The following formula gives up to the first 27 values. It can be extended by including the appropriate number of k-tuple sums to determine more values* ) f[n_] := FullSimplify[ Sum[(Floor[(n + 1)^2/Prime[j]] - Floor[n^2/Prime[j]])*Log[Prime[j]], {j, 1, PrimePi[n + 1]}] - Sum[Sum[(Floor[((n + 1)^2)/(Prime[i]Prime[j])] - Floor[((n)^2)/(Prime[i]Prime[j])])*Log[Prime[i]Prime[j]], {j, i + 1, PrimePi[n + 1]}], {i, 1, PrimePi[n + 1]}] + Sum[Sum[Sum[(Floor[((n + 1)^2)/(Prime[i]Prime[j]Prime[k])] - Floor[((n)^2)/(Prime[i]Prime[j]Prime[k])])* Log[Prime[i]Prime[j]Prime[k]], {k, j + 1, PrimePi[n + 1]}], {j, i + 1, PrimePi[n + 1]}], {i, 1, PrimePi[n + 1]}] - Sum[Sum[Sum[ Sum[(Floor[((n + 1)^2)/(Prime[i]Prime[j]Prime[k]Prime[q])] - Floor[((n)^2)/(Prime[i]Prime[j]Prime[k]Prime[q])])* Log[Prime[i]Prime[j]Prime[k]Prime[q]], {q, k + 1, PrimePi[n + 1]}], {k, j + 1, PrimePi[n + 1]}], {j, i + 1, PrimePi[n + 1]}], {i, 1, PrimePi[n + 1]}] + Sum[ Sum[Sum[Sum[ Sum[(Floor[((n + 1)^2)/(Prime[i] Prime[j]Prime[k]Prime[q]Prime[ p])] - Floor[((n)^2)/(Prime[i]Prime[j]Prime[k]Prime[q]Prime[ p])])* Log[Prime[i]Prime[j]Prime[k]Prime[q]Prime[p]], {p, q + 1, PrimePi[n + 1]}], {q, k + 1, PrimePi[n + 1]}], {k, j + 1, PrimePi[n + 1]}], {j, i + 1, PrimePi[n + 1]}], {i, 1, PrimePi[n + 1]}] - Sum[ Sum[Sum[Sum[ Sum[Sum[(Floor[((n + 1)^2)/(Prime[i]Prime[j]Prime[k]Prime[ q]Prime[p]Prime[r])] - Floor[((n)^2)/(Prime[i]Prime[j]Prime[k]Prime[q]Prime[ p]Prime[r])])* Log[Prime[i]Prime[j]Prime[k]Prime[q]Prime[p]Prime[r]], {r, p + 1, PrimePi[n + 1]}], {p, q + 1, PrimePi[n + 1]}], {q, k + 1, PrimePi[n + 1]}], {k, j + 1, PrimePi[n + 1]}], {j, i + 1, PrimePi[n + 1]}], {i, 1, PrimePi[n + 1]}] + Sum[ Sum[Sum[Sum[ Sum[Sum[Sum[(Floor[((n + 1)^2)/(Prime[i]Prime[j]Prime[k]Prime[ q]Prime[p]Prime[r]Prime[v])] - Floor[((n)^2)/(Prime[i]Prime[j]Prime[k]Prime[ q]Prime[p]Prime[r]Prime[v])])* Log[Prime[i]Prime[j]Prime[k]Prime[q]Prime[p]Prime[ r]Prime[v]], {v, r + 1, PrimePi[n + 1]}], {r, p + 1, PrimePi[n + 1 ]}], {p, q + 1, PrimePi[n + 1]}], {q, k + 1, PrimePi[n + 1]} ], {k, j + 1, PrimePi[n + 1]}], {j, i + 1, PrimePi[n + 1]}], {i, 1, PrimePi[n + 1]}] - Sum[ Sum[Sum[Sum[ Sum[Sum[Sum[ Sum[(Floor[((n + 1)^2)/(Prime[i]Prime[j]Prime[k]Prime[ q]Prime[p]Prime[r]Prime[v]Prime[u])] - Floor[((n)^2)/(Prime[i]Prime[j]Prime[k]Prime[ q]Prime[p]Prime[r]Prime[v]Prime[u])])* Log[Prime[i]Prime[j]Prime[k]Prime[q]Prime[p]Prime[ r]Prime[v]Prime[u]], {u, v + 1, PrimePi[n + 1]}], {v, r + 1, PrimePi[n + 1]}], {r, p + 1, PrimePi[n + 1]}], {p, q + 1, PrimePi[n + 1]}], {q, k + 1, PrimePi[n + 1]}], {k, j + 1, PrimePi[n + 1]}], {j, i + 1, PrimePi[n + 1]}], {i, 1, PrimePi[n + 1]}] + Sum[ Sum[Sum[Sum[ Sum[Sum[Sum[ Sum[Sum[(Floor[((n + 1)^2)/(Prime[i]Prime[j]Prime[k]Prime[ q]Prime[p]Prime[r]Prime[v]Prime[ u]Prime[a])] - Floor[((n)^2)/(Prime[i]Prime[j]Prime[k]Prime[ q]Prime[p]Prime[r]Prime[v]Prime[ u]Prime[a])])* Log[Prime[i]Prime[j]Prime[k]Prime[q]Prime[p]Prime[ r]Prime[v]Prime[u]Prime[a]], {a, u + 1, Prime[n + 1]}], {u, v + 1, PrimePi[n + 1]}], {v, r + 1, PrimePi[n + 1]}], {r, p + 1, PrimePi[n + 1]}], {p, q + 1, PrimePi[n + 1]}], {q, k + 1, PrimePi[n + 1]}], {k, j + 1, PrimePi[n + 1]}], {j, i + 1, PrimePi[n + 1]}], {i, 1, PrimePi[n + 1]}]] (* Then the values are Exp[f[n]] *) CROSSREFS Sequence in context: A359863 A326233 A087784 * A071224 A305381 A164532 Adjacent sequences: A174194 A174195 A174196 * A174198 A174199 A174200 KEYWORD nonn,uned AUTHOR Chris Orr (ckorr2003(AT)yahoo.com), Mar 11 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 19 19:45 EDT 2024. Contains 372703 sequences. (Running on oeis4.)