login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A174198
Floor of inverse of Minkowski's constant.
1
0, 1, 3, 8, 20, 50, 128, 326, 838, 2164, 5613, 14619, 38200, 100109, 263002, 692452, 1826640, 4826740, 12773610, 33850507, 89815472, 238573535, 634359840, 1688317073, 4497222961, 11988860360, 31983701435, 85383496739, 228083043888
OFFSET
1,3
COMMENTS
The subsequence of primes begins: 3, 100109. As a final application of Minkowski's theorem, Stevenhagen shows that the unit group of an order R in a number field with r real and 2s complex embeddings is finitely generated of free rank r + s - 1 (Dirichlet unit theorem).
LINKS
P. Stevenhagen, Number Rings, Chapter 5, Geometry of numbers.
FORMULA
a(n) = floor((n^n)*Pi/(4*n!)) = floor((Pi/4)*A000312(n)/A000142(n)).
EXAMPLE
a(0) = floor((1^1)*Pi/(4*1!)) = floor(0.78539816339744830962) = 0.
a(10) = floor((10^10)*Pi/(4*10!)) = floor(2164.3467906675714) = 2164.
MAPLE
Digits := 200 : A174198 := proc(n) n^n*Pi/4/n! ; floor(%) ; end proc: seq(A174198(n), n=1..30) ; # R. J. Mathar, Apr 15 2010
CROSSREFS
Sequence in context: A187003 A101893 A140662 * A077997 A294407 A295346
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Mar 11 2010
EXTENSIONS
More terms from R. J. Mathar, Apr 15 2010
STATUS
approved