The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A174197 Sequence that arises in connection with the number of primes between consecutive squares. 0

%I #16 Jun 28 2021 04:43:19

%S 4,6,24,30,720,168,720,2520,151200,55440,665280,1310400,47520,

%T 454053600,2471040,3598560,4410806400,1769644800,801964800,1150269120,

%U 2283240960

%N Sequence that arises in connection with the number of primes between consecutive squares.

%C Let f(n) = Sum_{p <= n+1} (floor((n+1)^2/p) - floor(n^2/p))log(p) - Sum_{p < q <= n+1} (floor((n+1)^2/(p*q)) - floor(n^2/(p*q)))log(p*q) + Sum_{p < q < r <= n+1} (floor((n+1)^2/(p*q*r)) - floor(n^2/(p*q*r)))*log(p*q*r) - ... The values of the sequence for positive integer n are e^f(n).

%e f(1) = Sum_{p<=2} (floor((n+1)^2/p) - floor(n^2/p))*log(p) = ((4/2) - (1/2))*log(2) = 2*log(2) = log(4).

%e f(2) = Sum_{p<=3} (floor(9/p) - floor(4/p))*log(p) - Sum_{p < q <= 3} (9/(p*q) - 4/(p*q))*log(p*q) = (9/2 - 4/2)*log(2) + (9/3 - 4/3)*log3 - (9/6 - 4/6)*log(6) = 2*log(2) + 2*log(3) - log(6) = log(6).

%e So the first two terms are 4 and 6.

%t (* The following formula gives up to the first 27 values. It can be extended by including the appropriate number of k-tuple sums to determine more values* )

%t f[n_] := FullSimplify[ Sum[(Floor[(n + 1)^2/Prime[j]] - Floor[n^2/Prime[j]])*Log[Prime[j]], {j, 1, PrimePi[n + 1]}] - Sum[Sum[(Floor[((n + 1)^2)/(Prime[i]Prime[j])] - Floor[((n)^2)/(Prime[i]Prime[j])])*Log[Prime[i]Prime[j]], {j, i + 1, PrimePi[n + 1]}],

%t {i, 1, PrimePi[n + 1]}] + Sum[Sum[Sum[(Floor[((n + 1)^2)/(Prime[i]Prime[j]Prime[k])] - Floor[((n)^2)/(Prime[i]Prime[j]Prime[k])])* Log[Prime[i]Prime[j]Prime[k]], {k, j + 1, PrimePi[n + 1]}], {j, i + 1, PrimePi[n + 1]}], {i, 1, PrimePi[n + 1]}] - Sum[Sum[Sum[ Sum[(Floor[((n + 1)^2)/(Prime[i]Prime[j]Prime[k]Prime[q])] - Floor[((n)^2)/(Prime[i]Prime[j]Prime[k]Prime[q])])* Log[Prime[i]Prime[j]Prime[k]Prime[q]], {q, k + 1, PrimePi[n + 1]}], {k, j + 1, PrimePi[n + 1]}], {j, i + 1, PrimePi[n + 1]}],

%t {i, 1, PrimePi[n + 1]}] + Sum[ Sum[Sum[Sum[ Sum[(Floor[((n + 1)^2)/(Prime[i] Prime[j]Prime[k]Prime[q]Prime[ p])] - Floor[((n)^2)/(Prime[i]Prime[j]Prime[k]Prime[q]Prime[ p])])* Log[Prime[i]Prime[j]Prime[k]Prime[q]Prime[p]], {p, q + 1, PrimePi[n + 1]}], {q, k + 1, PrimePi[n + 1]}], {k, j + 1, PrimePi[n + 1]}], {j, i + 1, PrimePi[n + 1]}], {i, 1, PrimePi[n + 1]}] - Sum[ Sum[Sum[Sum[ Sum[Sum[(Floor[((n + 1)^2)/(Prime[i]Prime[j]Prime[k]Prime[ q]Prime[p]Prime[r])] - Floor[((n)^2)/(Prime[i]Prime[j]Prime[k]Prime[q]Prime[ p]Prime[r])])* Log[Prime[i]Prime[j]Prime[k]Prime[q]Prime[p]Prime[r]],

%t {r, p + 1, PrimePi[n + 1]}], {p, q + 1, PrimePi[n + 1]}], {q, k + 1, PrimePi[n + 1]}], {k, j + 1, PrimePi[n + 1]}], {j, i + 1, PrimePi[n + 1]}], {i, 1, PrimePi[n + 1]}] + Sum[ Sum[Sum[Sum[ Sum[Sum[Sum[(Floor[((n + 1)^2)/(Prime[i]Prime[j]Prime[k]Prime[ q]Prime[p]Prime[r]Prime[v])] - Floor[((n)^2)/(Prime[i]Prime[j]Prime[k]Prime[ q]Prime[p]Prime[r]Prime[v])])* Log[Prime[i]Prime[j]Prime[k]Prime[q]Prime[p]Prime[ r]Prime[v]], {v, r + 1, PrimePi[n + 1]}], {r, p + 1, PrimePi[n + 1 ]}], {p, q + 1, PrimePi[n + 1]}],

%t {q, k + 1, PrimePi[n + 1]} ], {k, j + 1, PrimePi[n + 1]}], {j, i + 1, PrimePi[n + 1]}], {i, 1, PrimePi[n + 1]}] - Sum[ Sum[Sum[Sum[ Sum[Sum[Sum[ Sum[(Floor[((n + 1)^2)/(Prime[i]Prime[j]Prime[k]Prime[ q]Prime[p]Prime[r]Prime[v]Prime[u])] - Floor[((n)^2)/(Prime[i]Prime[j]Prime[k]Prime[ q]Prime[p]Prime[r]Prime[v]Prime[u])])* Log[Prime[i]Prime[j]Prime[k]Prime[q]Prime[p]Prime[ r]Prime[v]Prime[u]], {u, v + 1, PrimePi[n + 1]}], {v, r + 1, PrimePi[n + 1]}], {r, p + 1, PrimePi[n + 1]}], {p, q + 1, PrimePi[n + 1]}],

%t {q, k + 1, PrimePi[n + 1]}], {k, j + 1, PrimePi[n + 1]}], {j, i + 1, PrimePi[n + 1]}], {i, 1, PrimePi[n + 1]}] + Sum[ Sum[Sum[Sum[ Sum[Sum[Sum[ Sum[Sum[(Floor[((n + 1)^2)/(Prime[i]Prime[j]Prime[k]Prime[ q]Prime[p]Prime[r]Prime[v]Prime[ u]Prime[a])] - Floor[((n)^2)/(Prime[i]Prime[j]Prime[k]Prime[ q]Prime[p]Prime[r]Prime[v]Prime[ u]Prime[a])])* Log[Prime[i]Prime[j]Prime[k]Prime[q]Prime[p]Prime[ r]Prime[v]Prime[u]Prime[a]], {a, u + 1, Prime[n + 1]}], {u, v + 1, PrimePi[n + 1]}], {v, r + 1, PrimePi[n + 1]}], {r, p + 1, PrimePi[n + 1]}], {p, q + 1, PrimePi[n + 1]}], {q, k + 1, PrimePi[n + 1]}], {k, j + 1, PrimePi[n + 1]}], {j, i + 1, PrimePi[n + 1]}], {i, 1, PrimePi[n + 1]}]] (* Then the values are Exp[f[n]] *)

%K nonn,uned

%O 1,1

%A Chris Orr (ckorr2003(AT)yahoo.com), Mar 11 2010

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 15 06:51 EDT 2024. Contains 373402 sequences. (Running on oeis4.)