The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A305381 Number of 1's in truth table for Boolean function x1 x2 x4 + x2 x3 x5 + ... + x{n-3} x{n-2} xn + x{n-2} x{n-1} x1 + x{n-1} xn x2 + xn x1 x3. 1
 4, 6, 24, 36, 112, 184, 440, 848, 1792, 3680, 7392, 15264, 30464, 62272, 124800, 252416, 507264, 1019904, 2050048, 4111872, 8255488, 16544256, 33173504, 66454528, 133126144, 266594304, 533755904, 1068535808, 2138636288, 4280188928, 8564875264, 17137852416 (list; graph; refs; listen; history; text; internal format)
 OFFSET 4,1 LINKS Robert Israel, Table of n, a(n) for n = 4..3319 Francis N. Castro, Luis A. Medina, and L. Brehsner Sepúlveda, Recursions associated to trapezoid, symmetric and rotation symmetric functions over Galois fields, arXiv preprint arXiv:1702.08038 [math.CO] (2017). Francis N. Castro, Luis A. Medina, and L. Brehsner Sepúlveda, Recursions associated to trapezoid, symmetric and rotation symmetric functions over Galois fields, Discrete Math., 341 (2018), 1915-1931. Index entries for linear recurrences with constant coefficients, signature (2,2,-4,0,4,-8). FORMULA a(n) = 2*a(n-1) + 2*a(n-2) - 4*a(n-3) + 4*a(n-5) - 8*a(n-6). G.f.: 2*x^4*(2 - x + 2*x^2 - 4*x^3 + 8*x^4 - 16*x^5)/((1 - 2*x)*(1 - 2*x^2 - 4*x^5)). - Bruno Berselli, Jun 20 2018 MAPLE f:= gfun:-rectoproc({a(n) = 2*a(n-1)+2*a(n-2)-4*a(n-3)+4*a(n-5)-8*a(n-6), seq(a(n) = [4, 6, 24, 36, 112, 184][n+1], n=0..5)}, a(n), remember): map(f, [\$0..40]); # Robert Israel, Jun 20 2018 MATHEMATICA LinearRecurrence[{2, 2, -4, 0, 4, -8}, {4, 6, 24, 36, 112, 184}, 32] (* Giovanni Resta, Jun 20 2018 *) CROSSREFS Sequence in context: A087784 A174197 A071224 * A164532 A098660 A363631 Adjacent sequences: A305378 A305379 A305380 * A305382 A305383 A305384 KEYWORD nonn,easy AUTHOR N. J. A. Sloane, Jun 16 2018 EXTENSIONS More terms from Giovanni Resta, Jun 20 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 15 06:51 EDT 2024. Contains 373402 sequences. (Running on oeis4.)