The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A305381 Number of 1's in truth table for Boolean function x1 x2 x4 + x2 x3 x5 + ... + x{n-3} x{n-2} xn + x{n-2} x{n-1} x1 + x{n-1} xn x2 + xn x1 x3. 1
4, 6, 24, 36, 112, 184, 440, 848, 1792, 3680, 7392, 15264, 30464, 62272, 124800, 252416, 507264, 1019904, 2050048, 4111872, 8255488, 16544256, 33173504, 66454528, 133126144, 266594304, 533755904, 1068535808, 2138636288, 4280188928, 8564875264, 17137852416 (list; graph; refs; listen; history; text; internal format)
OFFSET
4,1
LINKS
Francis N. Castro, Luis A. Medina, and L. Brehsner Sepúlveda, Recursions associated to trapezoid, symmetric and rotation symmetric functions over Galois fields, arXiv preprint arXiv:1702.08038 [math.CO] (2017).
Francis N. Castro, Luis A. Medina, and L. Brehsner Sepúlveda, Recursions associated to trapezoid, symmetric and rotation symmetric functions over Galois fields, Discrete Math., 341 (2018), 1915-1931.
FORMULA
a(n) = 2*a(n-1) + 2*a(n-2) - 4*a(n-3) + 4*a(n-5) - 8*a(n-6).
G.f.: 2*x^4*(2 - x + 2*x^2 - 4*x^3 + 8*x^4 - 16*x^5)/((1 - 2*x)*(1 - 2*x^2 - 4*x^5)). - Bruno Berselli, Jun 20 2018
MAPLE
f:= gfun:-rectoproc({a(n) = 2*a(n-1)+2*a(n-2)-4*a(n-3)+4*a(n-5)-8*a(n-6),
seq(a(n) = [4, 6, 24, 36, 112, 184][n+1], n=0..5)}, a(n), remember):
map(f, [$0..40]); # Robert Israel, Jun 20 2018
MATHEMATICA
LinearRecurrence[{2, 2, -4, 0, 4, -8}, {4, 6, 24, 36, 112, 184}, 32] (* Giovanni Resta, Jun 20 2018 *)
CROSSREFS
Sequence in context: A087784 A174197 A071224 * A164532 A098660 A363631
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Jun 16 2018
EXTENSIONS
More terms from Giovanni Resta, Jun 20 2018
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 15 06:51 EDT 2024. Contains 373402 sequences. (Running on oeis4.)