login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A363631
Expansion of Sum_{k>0} (1/(1+x^k)^4 - 1).
4
-4, 6, -24, 41, -60, 70, -124, 206, -244, 236, -368, 560, -564, 566, -896, 1175, -1144, 1180, -1544, 2042, -2168, 1942, -2604, 3650, -3336, 3100, -4304, 5096, -4964, 4940, -5988, 7720, -7528, 6636, -8616, 10809, -9884, 9126, -12064, 14548, -13248, 12796, -15184, 18192, -18412, 15830
OFFSET
1,1
LINKS
FORMULA
G.f.: Sum_{k>0} binomial(k+3,3) * (-x)^k/(1 - x^k).
a(n) = Sum_{d|n} (-1)^d * binomial(d+3,3).
MATHEMATICA
a[n_] := DivisorSum[n, (-1)^#*Binomial[# + 3, 3] &]; Array[a, 50] (* Amiram Eldar, Jul 18 2023 *)
PROG
(PARI) a(n) = sumdiv(n, d, (-1)^d*binomial(d+3, 3));
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Seiichi Manyama, Jun 12 2023
STATUS
approved