login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A363598
Expansion of Sum_{k>0} x^(2*k)/(1+x^k)^4.
6
0, 1, -4, 11, -20, 32, -56, 95, -124, 146, -220, 328, -364, 400, -584, 775, -816, 881, -1140, 1486, -1600, 1552, -2024, 2712, -2620, 2562, -3400, 4064, -4060, 4112, -4960, 6231, -6208, 5730, -7216, 8947, -8436, 8000, -10248, 12230, -11480, 11232, -13244, 15752
OFFSET
1,3
LINKS
FORMULA
G.f.: Sum_{k>0} binomial(k+1,3) * (-x)^k/(1 - x^k).
a(n) = Sum_{d|n} (-1)^d * binomial(d+1,3) = (A002129(n) - A138503(n))/6.
MATHEMATICA
a[n_] := DivisorSum[n, (-1)^# * Binomial[# + 1, 3] &]; Array[a, 50] (* Amiram Eldar, Jul 25 2023 *)
PROG
(PARI) my(N=50, x='x+O('x^N)); concat(0, Vec(sum(k=1, N, x^(2*k)/(1+x^k)^4)))
(PARI) a(n) = sumdiv(n, d, (-1)^d*binomial(d+1, 3));
CROSSREFS
KEYWORD
sign
AUTHOR
Seiichi Manyama, Jun 11 2023
STATUS
approved