login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A325940
Expansion of Sum_{k>=1} x^(2*k) / (1 + x^k)^2.
9
0, 1, -2, 4, -4, 4, -6, 11, -10, 6, -10, 18, -12, 8, -20, 26, -16, 13, -18, 28, -28, 12, -22, 48, -28, 14, -36, 38, -28, 24, -30, 57, -44, 18, -44, 62, -36, 20, -52, 74, -40, 32, -42, 58, -72, 24, -46, 110, -54, 31, -68, 68, -52, 40, -68, 100, -76, 30, -58, 116
OFFSET
1,3
LINKS
Joerg Arndt, On computing the generalized Lambert series, arXiv:1202.6525v3 [math.CA], (2012).
FORMULA
G.f.: Sum_{k>=2} (-1)^k * (k - 1) * x^k / (1 - x^k).
a(n) = Sum_{d|n} (-1)^d * (d - 1).
a(n) = A048272(n) - A002129(n).
Faster converging series: A(q) = Sum_{n >= 1} (-1)^n*q^(n^2)*((n-1)*q^(3*n) + n*q^(2*n) + (n-2)*q^n + n-1)/((1 + q^n)*(1 - q^(2*n))) - apply the operator t*d/dt to equation 1 in Arndt, then set t = -q and x = q. - Peter Bala, Jan 22 2021
a(n) = A128315(n, 2). - G. C. Greubel, Jun 22 2024
MATHEMATICA
nmax = 60; CoefficientList[Series[Sum[x^(2 k)/(1 + x^k)^2, {k, 1, nmax}], {x, 0, nmax}], x] // Rest
Table[Sum[(-1)^d (d - 1), {d, Divisors[n]}], {n, 1, 60}]
PROG
(PARI) {a(n) = sumdiv(n, d, (-1)^d*(d-1))} \\ Seiichi Manyama, Sep 14 2019
(Magma)
A325940:= func< n | (&+[0^(n mod j)*(-1)^j*(j-1): j in [1..n]]) >;
[A325940(n): n in [1..70]]; // G. C. Greubel, Jun 22 2024
(SageMath)
def A325940(n): return sum(0^(n%j)*(-1)^j*(j-1) for j in range(1, n+1))
[A325940(n) for n in range(1, 71)] # G. C. Greubel, Jun 22 2024
CROSSREFS
KEYWORD
sign,look
AUTHOR
Ilya Gutkovskiy, Sep 09 2019
STATUS
approved