login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A325937
Expansion of Sum_{k>=1} (-1)^(k + 1) * x^(2*k) / (1 - x^k).
4
0, 1, 1, 0, 1, 1, 1, -1, 2, 1, 1, -1, 1, 1, 3, -2, 1, 1, 1, -1, 3, 1, 1, -3, 2, 1, 3, -1, 1, 1, 1, -3, 3, 1, 3, -2, 1, 1, 3, -3, 1, 1, 1, -1, 5, 1, 1, -5, 2, 1, 3, -1, 1, 1, 3, -3, 3, 1, 1, -3, 1, 1, 5, -4, 3, 1, 1, -1, 3, 1, 1, -5, 1, 1, 5, -1, 3, 1, 1, -5
OFFSET
1,9
COMMENTS
Number of odd proper divisors of n minus number of even proper divisors of n.
LINKS
FORMULA
G.f.: Sum_{k>=2} x^k / (1 + x^k).
a(n) = -Sum_{d|n, d<n} (-1)^d.
a(n) = A048272(n) + (-1)^n.
MATHEMATICA
nmax = 80; CoefficientList[Series[Sum[(-1)^(k + 1) x^(2 k)/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
Table[-DivisorSum[n, (-1)^# &, # < n &], {n, 1, 80}]
PROG
(PARI) A325937(n) = -sumdiv(n, d, if(d==n, 0, ((-1)^d))); \\ Antti Karttunen, Sep 20 2019
CROSSREFS
Cf. A032741, A048272, A058344, A091954, A275495 (partial sums), A325939.
Sequence in context: A253642 A070084 A352635 * A327167 A268372 A361754
KEYWORD
sign,look
AUTHOR
Ilya Gutkovskiy, Sep 09 2019
STATUS
approved