OFFSET
1,6
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..10000
FORMULA
From Antti Karttunen, Oct 04 2017: (Start)
a(n) = Sum_{d|n, d<n} A000035(n).
(End)
G.f.: Sum_{k>=2} x^k/(1 - x^(2*k)). - Seiichi Manyama, Jan 23 2021
Sum_{k=1..n} a(k) ~ n*log(n)/2 + (gamma + log(2)/2 - 1)*n, where gamma is Euler's constant (A001620). - Amiram Eldar, Nov 26 2023
EXAMPLE
The odd divisors of 15 that are less than 15 are 1, 3 and 5. Therefore there are three odd divisors of 15 that are less than 15.
MATHEMATICA
Count[Most[Divisors[#]], _?OddQ]&/@Range[100] (* Harvey P. Dale, Sep 28 2012 *)
a[n_] := DivisorSigma[0, n/2^IntegerExponent[n, 2]] - Boole[OddQ[n]]; Array[a, 100] (* Amiram Eldar, Jun 11 2022 *)
PROG
(PARI) A091954(n) = sumdiv(n, d, (d<n)*(d%2)); \\ Antti Karttunen, Oct 04 2017
(PARI) my(N=66, x='x+O('x^N)); concat(0, Vec(sum(k=2, N, x^k/(1-x^(2*k))))) \\ Seiichi Manyama, Jan 23 2021
CROSSREFS
Sum of the k-th powers of the odd proper divisors of n for k=0..10: this sequence (k=0), A091570 (k=1), A351647 (k=2), A352031 (k=3), A352032 (k=4), A352033 (k=5), A352034 (k=6), A352035 (k=7), A352036 (k=8), A352037 (k=9), A352038 (k=10).
KEYWORD
easy,nonn
AUTHOR
Mohammad K. Azarian, Mar 12 2004
EXTENSIONS
Corrected and extended by Harvey P. Dale, Sep 28 2012
STATUS
approved