login
A352050
Sum of the 4th powers of the divisor complements of the odd proper divisors of n.
11
0, 16, 81, 256, 625, 1312, 2401, 4096, 6642, 10016, 14641, 20992, 28561, 38432, 51331, 65536, 83521, 106288, 130321, 160256, 196963, 234272, 279841, 335872, 391250, 456992, 538083, 614912, 707281, 821312, 923521, 1048576, 1200643, 1336352, 1503651, 1700608, 1874161
OFFSET
1,2
LINKS
FORMULA
a(n) = n^4 * Sum_{d|n, d<n, d odd} 1 / d^4.
G.f.: Sum_{k>=2} k^4 * x^k / (1 - x^(2*k)). - Ilya Gutkovskiy, May 14 2023
From Amiram Eldar, Oct 13 2023: (Start)
a(n) = A051001(n) * A006519(n)^4 - A000035(n).
Sum_{k=1..n} a(k) = c * n^5 / 5, where c = 31*zeta(5)/32 = 1.00452376... . (End)
EXAMPLE
a(10) = 10^4 * Sum_{d|10, d<10, d odd} 1 / d^4 = 10^4 * (1/1^4 + 1/5^4) = 10016.
MAPLE
f:= proc(n) local m, d;
m:= n/2^padic:-ordp(n, 2);
add((n/d)^4, d = select(`<`, numtheory:-divisors(m), n))
end proc:map(f, [$1..40]); # Robert Israel, Apr 03 2023
MATHEMATICA
A352050[n_]:=DivisorSum[n, 1/#^4&, #<n&&OddQ[#]&]n^4; Array[A352050, 50] (* Paolo Xausa, Aug 09 2023 *)
a[n_] := DivisorSigma[-4, n/2^IntegerExponent[n, 2]] * n^4 - Mod[n, 2]; Array[a, 100] (* Amiram Eldar, Oct 13 2023 *)
PROG
(PARI) a(n) = n^4 * sigma(n >> valuation(n, 2), -4) - n % 2; \\ Amiram Eldar, Oct 13 2023
CROSSREFS
Sum of the k-th powers of the divisor complements of the odd proper divisors of n for k=0..10: A091954 (k=0), A352047 (k=1), A352048 (k=2), A352049 (k=3), this sequence (k=4), A352051 (k=5), A352052 (k=6), A352053 (k=7), A352054 (k=8), A352055 (k=9), A352056 (k=10).
Sequence in context: A000583 A050751 A014188 * A050463 A075578 A113316
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Mar 01 2022
STATUS
approved