login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A352050 Sum of the 4th powers of the divisor complements of the odd proper divisors of n. 11
0, 16, 81, 256, 625, 1312, 2401, 4096, 6642, 10016, 14641, 20992, 28561, 38432, 51331, 65536, 83521, 106288, 130321, 160256, 196963, 234272, 279841, 335872, 391250, 456992, 538083, 614912, 707281, 821312, 923521, 1048576, 1200643, 1336352, 1503651, 1700608, 1874161 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
LINKS
FORMULA
a(n) = n^4 * Sum_{d|n, d<n, d odd} 1 / d^4.
G.f.: Sum_{k>=2} k^4 * x^k / (1 - x^(2*k)). - Ilya Gutkovskiy, May 14 2023
EXAMPLE
a(10) = 10^4 * Sum_{d|10, d<10, d odd} 1 / d^4 = 10^4 * (1/1^4 + 1/5^4) = 10016.
MAPLE
f:= proc(n) local m, d;
m:= n/2^padic:-ordp(n, 2);
add((n/d)^4, d = select(`<`, numtheory:-divisors(m), n))
end proc:map(f, [$1..40]); # Robert Israel, Apr 03 2023
MATHEMATICA
A352050[n_]:=DivisorSum[n, 1/#^4&, #<n&&OddQ[#]&]n^4; Array[A352050, 50] (* Paolo Xausa, Aug 09 2023 *)
CROSSREFS
Sum of the k-th powers of the divisor complements of the odd proper divisors of n for k=0..10: A091954 (k=0), A352047 (k=1), A352048 (k=2), A352049 (k=3), this sequence (k=4), A352051 (k=5), A352052 (k=6), A352053 (k=7), A352054 (k=8), A352055 (k=9), A352056 (k=10).
Sequence in context: A000583 A050751 A014188 * A050463 A075578 A113316
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Mar 01 2022
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 28 14:43 EDT 2023. Contains 365736 sequences. (Running on oeis4.)