login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A051001
Sum of 4th powers of odd divisors of n.
20
1, 1, 82, 1, 626, 82, 2402, 1, 6643, 626, 14642, 82, 28562, 2402, 51332, 1, 83522, 6643, 130322, 626, 196964, 14642, 279842, 82, 391251, 28562, 538084, 2402, 707282, 51332, 923522, 1, 1200644, 83522, 1503652, 6643, 1874162, 130322, 2342084, 626, 2825762, 196964
OFFSET
1,3
LINKS
J. W. L. Glaisher, On the representations of a number as the sum of two, four, six, eight, ten, and twelve squares, Quart. J. Math. 38 (1907), 1-62 (see p. 4 and p. 8).
Eric Weisstein's World of Mathematics, Odd Divisor Function.
FORMULA
Dirichlet g.f. (1-2^(4-s))*zeta(s)*zeta(s-4). - R. J. Mathar, Apr 06 2011
G.f.: Sum_{k>=1} (2*k - 1)^4*x^(2*k-1)/(1 - x^(2*k-1)). - Ilya Gutkovskiy, Jan 04 2017
a(n) = A001159(A000265(n)). - Robert Israel, Jan 05 2017
Multiplicative with a(2^e) = 1 and a(p^e) = (p^(4*e+4)-1)/(p^4-1) for p > 2. - Amiram Eldar, Sep 14 2020
Sum_{k=1..n} a(k) ~ zeta(5)*n^5/10. - Vaclav Kotesovec, Sep 24 2020
G.f.: Sum_{n >= 1} x^n*(1 + 76*x^(2*n) + 230*x^(4*n) + 76*x^(6*n) + x^(8*n))/(1 - x^(2*n))^5. See row 5 of A060187. - Peter Bala, Dec 20 2021
MAPLE
f:= proc(n) add(x^4, x = numtheory:-divisors(n/2^padic:-ordp(n, 2))) end proc:
map(f, [$1..100]); # Robert Israel, Jan 05 2017
MATHEMATICA
Table[Total[Select[Divisors[n], OddQ]^4], {n, 40}] (* Harvey P. Dale, Oct 02 2014 *)
f[2, e_] := 1; f[p_, e_] := (p^(4*e + 4) - 1)/(p^4 - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 14 2020 *)
PROG
(PARI) a(n) = sumdiv(n , d, (d%2)*d^4); \\ Michel Marcus, Jan 14 2014
(Python)
from sympy import divisor_sigma
def A051001(n): return int(divisor_sigma(n>>(~n&n-1).bit_length(), 4)) # Chai Wah Wu, Jul 16 2022
KEYWORD
nonn,mult,look
STATUS
approved