login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A363991
a(n) = Sum_{d|n, d odd} d^(d+1).
3
1, 1, 82, 1, 15626, 82, 5764802, 1, 3486784483, 15626, 3138428376722, 82, 3937376385699290, 5764802, 6568408355712906332, 1, 14063084452067724991010, 3486784483, 37589973457545958193355602, 15626, 122694327386105632949009377724, 3138428376722
OFFSET
1,3
FORMULA
G.f.: Sum_{k>0} (2*k-1)^(2*k) * x^(2*k-1) / (1 - x^(2*k-1)).
a(2^n) = 1.
MATHEMATICA
a[n_] := DivisorSum[n, #^(# + 1) &, OddQ[#] &]; Array[a, 22] (* Amiram Eldar, Jul 09 2023 *)
PROG
(PARI) a(n) = sumdiv(n, d, (d%2==1)*d^(d+1));
(Python)
from sympy import divisors
def A363991(n): return sum(d**(d+1) for d in divisors(n>>(~n & n-1).bit_length(), generator=True)) # Chai Wah Wu, Jul 09 2023
CROSSREFS
Cf. A364041.
Sequence in context: A347175 A352032 A051001 * A050678 A354501 A033402
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Jul 09 2023
STATUS
approved